First-Principles Calculations of the Electronic and Structural Properties of GaSb
Contribuinte(s) |
Seña, S. Mendoza -Estrada, V. González-Hernández, R. Dussan, Anderson Castaño-González, E.-E. NANOTECH |
---|---|
Data(s) |
01/03/2016
|
Resumo |
In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects ofexchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew– Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structure with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B0); while for the cohesive energy (Ecoh), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR C. H. Fu, Y. H. Lin, W. C. Lee, T. D. Lin, R. L. Chu, L. K. Chu, P. Chang, M. H. Chen, W. J. Hsueh, S. H. Chen, G. J. Brown, J. I. Chyi, J. Kwo, and M. Hong, Microelectron. Eng. 147, 330 (2015). Zhang Lixue, Sun Weiguo, Xu Yingqiang, Zhang Lei, Zhang Liang, and Si Junjie, Infrared Phys. Technol. 65, 129 (2014). Ye Hong, Shu Yue, and Tang Liangliang, Solar Energy Mater. Solar Cells 125, 268 (2014). Yang Guandong, Zhu Feng, and Dong Shan, J. Cryst. Growth 316, 145 (2011). J. T. Vaughey, J. O’Hara, and M. M. Thackeray, Electrochem. Solid State Lett. 3, 13 (2000). M. Morcrette, D. Larcher, J. M. Tarascon, K. Edström, J. T. Vaughey, and M. M. Thackeray, Electrochim. Acta 52, 5339 (2007). E. Dynowska, J. Bak-Misiuk, P. Romanowski, J. Z. Domagala, J. Sadowski, T. Wojciechowski, S. Kret, B. Kurowska, A. Kwiatkowski, and W. Caliebe, Rad. Phys. Chem. 80, 1051 (2011). A. Wolska, M. T. Klepka, K. Lawniczak-Jablonska, J. Sadowski, A. Reszka, and B. J. Kowalski, Rad. Phys. Chem. 80, 1026 (2011). Sun Wei-Feng, Li Mei-Cheng, and Zhao Lian-Cheng, Superlatt. Microstruct. 49, 81 (2011). N. Liu, G. Y. Gao, J. B. Liu, and K. L. Yao, Comput. Mater. Sci. 95, 557 (2014) N. Liu, G. Y. Gao, J. B. Liu, and K. L. Yao, Phys. B: Condens. Matter 405, 1663 (2010). D. Varshney, G. Joshi, M. Varshney, Swarna Shriya, G. Kresse, and J. Hafner, Phys. Rev. B 49, 14251 (1994). J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). J. P. Perdew, K. Burke, and M. Emzerhof, Phys. Rev. Lett. 77, 3865 (1996). J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008). J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992). B. Hammer, L. B. Hansen, and J. K. Norskov, Phys. Rev. B 59, 7413 (1999). J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2005). P. Scharoch and M. Winiarski, Comput. Phys. Commun. 184, 2680 (2013). J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. W. Sun, Pys. Rev. Lett. 106, 179902(E) (2011). F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). F. D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944). R. Ahmed, F. Aleem, S. Javad, H. Rashid, and H. Akbarzadeh, Theor. Phys. 52, 527 (2009). N. N. Sirota and F. M. Gololobov, Sov. Phys. Dokl. 144, 89 (1962). A. H. Reshak, Eur. Phys. and J. B 47, 503 (2005). T. C. McGlinn, T. N. Krabach, M. V. Klein, G. Bajor, J. E. Greene, B. Kramer, S. A. Barnett, A. Lastras, and S. Gorbatkin, Phys. Rev. B 33, 8396 (1986). K. Aoki, E. Anastassakis, and M. Cardona, Phys. Rev. B 30, 681 (1984). S. Kotochigova, Z. H. Levine, E. L. Shirley, M. D. Stiles, and C. W. Clark, Phys. Rev. A 55, 191 (1997). |
Tipo |
info:eu-repo/semantics/workingPaper info:eu-repo/semantics/publishedVersion |