Procesos hopping a través del modelo difusional en materiales nanocristalinos usados para aplicaciones fotovoltaicas
Contribuinte(s) |
Dussan, Anderson NANOTECH |
---|---|
Data(s) |
14/04/2014
|
Resumo |
Se presentan los modelos de hopping de rango variable (variable range hopping; VRH), vecinos cercanos (nearest neighbor hopping; NNH) y barreras de potencial presentes en las fronteras de grano; como mecanismos de transporte eléctrico predominantes en los materiales semiconductores para aplicaciones fotovoltaicas. Las medidas de conductividad a oscuras en función de temperatura fueron realizadas para región de bajas temperaturas entre 120 y 400 K con Si y compuestos Cu3BiS2 y Cu2ZnSnSe4. Siguiendo la teoría de percolación, se obtuvieron parámetros hopping y la densidad de estados cerca del nivel de Fermi, N(EF), para todas las muestras. A partir de los planteamientos dados por Mott para VRH, se presentó el modelo difusional, que permitió establecer la relación entre la conductividad y la densidad de estados de defecto o estados localizados en el gap del material. El análisis comparativo entre modelos, evidenció, que es posible obtener mejora hasta de un orden de magnitud en valores para cada uno de los parámetros hopping que caracterizan el material. Here, we present variable range hopping (VRH) models, nearest neighbor hopping (NNH) and potential barriers present at the grain boundaries, as well as mechanisms of electrical transport predominant in semiconductor materials for photovoltaic applications. We performed dark conductivity measures according to temperature for low temperature regions between 120 and 400 K in Si and Cu3BiS2 and Cu2ZnSnSe4compounds. Using the percolation theory, we obtained hopping parameters and the density of states near the Fermi, N(EF) level for all samples. Using the approach by Mott for VRH, we obtained the diffusion model, which established the relationship between conductivity and density of defect states or localized gap states of the material. The comparative analysis between models evidenced that it is possible to obtain improvement of an order of magnitude in the values of each of the hopping parameters that characterize the material. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
spa |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR Arredondo CA, Gordillo G (2010) Photoconductive and electrical transport properties of AgInSe2 thin films prepared by co-evaporation. Physica B: Condensed Matter 405:3694-3699 doi: 10.1016/j.physb.2010.05.068 Chen T, Huang Y, Dasgupta A, Luysberg M, Houben L et al. (2012) Microcrystalline silicon carbide window layers in thin film silicon solar cells. Solar Energy Materials and Solar Cells 98:370-378 doi: 10.1016/j.solmat.2011.11.039 Chen X, Lin Q, Ni J, Zhang D, Sun J et al. (2011) Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells. Thin Solid Films 520:1263- 1267 doi: 10.1016/j.tsf.2011.04.199 Dalvi A, Reddy NP, Agarwal SC (2012) The Meyer-Neldel rule and hopping conduction. Solid State Communications 152:612-615 doi: 10.1016/j.ssc.2012.01.018 Dantus C, Rusu RS, Rusu GI (2011) On the mechanism of electronic transport in polycrystalline CdO thin films. Superlattices and Microstructures 50:303-310 doi: 10.1016/j. spmi.2011.07.008 Dussan A, Buitrago RH (2005) Transport mechanism in lightly doped hydrogenated microcrystalline silicon thin films. Journal of Applied Physics 97:043711 doi: 10.1063/1.1848193 Dussan A, Buitrago RH, Koropecki RR (2008) Microcrystalline silicon thin films: A review of physical properties. Microelectronics Journal 39:1292-1295 doi: 10.1016/j.mejo.2008.01.019 Dussan A, Mesa F, Botero M, Gordillo G (2009) Electrical and optical properties of thin films with a SnS2 – Bi2S3 alloy grown by sulphurization. Journal of Physics: Conference Series 167:012018 doi: 10.1088/1742- 6596/167/1/012018 Dussan A, Mesa F, Botero M, Gordillo G (2012) Electrical and optical properties of thin films with a SnS2 –Bi2S3 alloy grown by sulphurization. Journal of Physics: Conference Series 167:012018 doi: 10.1088/1742- 6596/167/1/012018 Eginligil M, Zhang W, Kalitsov A, Lu X, Yang H (2012) Tunneling behavior of bismuth telluride nanoplates in electrical transport. Chemical Physics Letters 546:125-128 doi: 10.1016/j.cplett.2012.07.068 Huang X, Wu C, Lu H, Ren F, Chen D et al. (2013) Temperature and gate bias dependence of carrier transport mechanisms in amorphous indium–gallium– zinc oxide thin film transistors. Solid-State Electronics 86:41-44 doi: 10.1016/j.sse.2013.04.025 Kang DW, Kwon JY, Shim J, Lee HM, Han MK (2012) Highly conductive GaN anti-reflection layer at transparent conducting oxide/Si interface for silicon thin film solar cells. Solar Energy Materials and Solar Cells 105:317-321 doi: 10.1016/j.solmat.2012.06.041 Kim SJ, Gunduz B, Yoon DH, Kim HJ, Al-Ghamdic A et al. (2013) Photofield effect and photoresponse properties of the transparent oxide-based BaInZnO thin-film transistors. Sensors and Actuators A: Physical 193:1-12 doi: 10.1016/j.sna.2013.01.002 Koval Y, Lazareva I, Müller P (2011) Coulomb gap variable range hopping in graphitized polymer surfaces. Synthetic Metals 161:528-534 doi: 10.1016/j.synthmet.2011.01.007 Li L, Chung KS, Jang J (2012) Carrier concentration dependent bimolecular recombination coefficient model in two dimensional hopping system. Synthetic Metals 162:702-704 doi: 10.1016/j.synthmet.2012.02.013 Lisunov KG, Guk M, Nateprov A, Levcenko S, Tezlevan V (2013) Features of the acceptor band and properties of localized carriers from studies of the variable-range hopping conduction in single crystals of p-Cu2ZnSnS4. Mesa F, Dussan A, Gordillo G (2009) Evidence of trapping levels and photoelectric properties of Cu3BiS2 thin films. Physica B: Condensed Matter 404:5227-5230 doi: 10.1016/j.physb.2009.08.302 Miller JB, Ashok T, Lee S, Broitmanet E (2012) Zinc oxidebased thin film functional layers for chemiresistive sensors. Thin Solid Films 520:6669-6676 doi: 10.1016/j. tsf.2012.07.016 Misra SK, Andronenkoa SI, Asthana S, Bahadur D (2010) A variable temperature EPR study of the manganites (La1/3Sm2/3) 2/3SrxBa0.33−xMnO3 (x=0.0, 0.1, 0.2, 0.33): Small polaronhopping conductivity and Griffiths phase. Journal of Magnetism and Magnetic Materials 322:2902-2907 doi: 10.1016/j.jmmm.2010.05.003 Mott NF (1969) Philos. Mag 19:835 Morthekai P, Thomas J, Pandian MS, Balaram V, Singhvi AK (2012) Variable range hopping mechanism in bandtail states of feldspars: A time-resolved IRSL study. Radiation Measurements 47:857-863 Phan BT, Choic T, Romanenko A, Lee J (2012) Hopping and trap controlled conduction in Cr-doped SrTiO3 thin films. Solid-State Electronics 75:43-47 doi: 10.1016/j. sse.2012.05.007 Serin N, Yildiz A, Alsaç AA, Serinet T (2011) Estimation of compensation ratio by identifying the presence of different hopping conduction mechanisms in SnO2 thin films. Thin Solid Films 519:2302-2307 doi: 10.1016/j. tsf.20 Shen HP, Zhao CY (2013) Analytical considerations of light transport in nanostructured homogeneous/ inhomogeneous thin films. Thin Solid Films 542:204-209 doi: 10.1016/j.tsf.2013.06.066 Thamilselvan M, Premnazeer K, Mangalaraj D, Narayandass SK (2003) Field and temperature-dependent electronic transport parameters of amorphous and polycrystalline GaSe thin films. Physica B: Condensed Matter 337:404-412 doi: 10.1016/S0921-4526(03)00444-7 Yadav AA, Masumdar EU (2010) Optical and electrical transport properties of spray deposited CdS1−xSex thin films. Journal of Alloys and Compounds 505:787-792 doi: 10.1016/j.jallcom.2010.06.141 |
Palavras-Chave | #Semiconductors; hopping transport; diffusion model |
Tipo |
info:eu-repo/semantics/workingPaper info:eu-repo/semantics/publishedVersion |