Procesos hopping a través del modelo difusional en materiales nanocristalinos usados para aplicaciones fotovoltaicas


Autoria(s): Mesa, Fredy
Contribuinte(s)

Dussan, Anderson

NANOTECH

Data(s)

14/04/2014

Resumo

Se presentan los modelos de hopping de rango variable (variable range hopping; VRH), vecinos cercanos (nearest neighbor hopping; NNH) y barreras de potencial presentes en las fronteras de grano; como mecanismos de transporte eléctrico predominantes en los materiales semiconductores para aplicaciones fotovoltaicas. Las medidas de conductividad a oscuras en función de temperatura fueron realizadas para región de bajas temperaturas entre 120 y 400 K con Si y compuestos Cu3BiS2 y Cu2ZnSnSe4. Siguiendo la teoría de percolación, se obtuvieron parámetros hopping y la densidad de estados cerca del nivel de Fermi, N(EF), para todas las muestras. A partir de los planteamientos dados por Mott para VRH, se presentó el modelo difusional, que permitió establecer la relación entre la conductividad y la densidad de estados de defecto o estados localizados en el gap del material. El análisis comparativo entre modelos, evidenció, que es posible obtener mejora hasta de un orden de magnitud en valores para cada uno de los parámetros hopping que caracterizan el material.

Here, we present variable range hopping (VRH) models, nearest neighbor hopping (NNH) and potential barriers present at the grain boundaries, as well as mechanisms of electrical transport predominant in semiconductor materials for photovoltaic applications. We performed dark conductivity measures according to temperature for low temperature regions between 120 and 400 K in Si and Cu3BiS2 and Cu2ZnSnSe4compounds. Using the percolation theory, we obtained hopping parameters and the density of states near the Fermi, N(EF) level for all samples. Using the approach by Mott for VRH, we obtained the diffusion model, which established the relationship between conductivity and density of defect states or localized gap states of the material. The comparative analysis between models evidenced that it is possible to obtain improvement of an order of magnitude in the values of each of the hopping parameters that characterize the material.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/12549

Idioma(s)

spa

Direitos

info:eu-repo/semantics/openAccess

Fonte

instname:Universidad del Rosario

reponame:Repositorio Institucional EdocUR

Arredondo CA, Gordillo G (2010) Photoconductive and electrical transport properties of AgInSe2 thin films prepared by co-evaporation. Physica B: Condensed Matter 405:3694-3699 doi: 10.1016/j.physb.2010.05.068

Chen T, Huang Y, Dasgupta A, Luysberg M, Houben L et al. (2012) Microcrystalline silicon carbide window layers in thin film silicon solar cells. Solar Energy Materials and Solar Cells 98:370-378 doi: 10.1016/j.solmat.2011.11.039

Chen X, Lin Q, Ni J, Zhang D, Sun J et al. (2011) Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells. Thin Solid Films 520:1263- 1267 doi: 10.1016/j.tsf.2011.04.199

Dalvi A, Reddy NP, Agarwal SC (2012) The Meyer-Neldel rule and hopping conduction. Solid State Communications 152:612-615 doi: 10.1016/j.ssc.2012.01.018

Dantus C, Rusu RS, Rusu GI (2011) On the mechanism of electronic transport in polycrystalline CdO thin films. Superlattices and Microstructures 50:303-310 doi: 10.1016/j. spmi.2011.07.008

Dussan A, Buitrago RH (2005) Transport mechanism in lightly doped hydrogenated microcrystalline silicon thin films. Journal of Applied Physics 97:043711 doi: 10.1063/1.1848193

Dussan A, Buitrago RH, Koropecki RR (2008) Microcrystalline silicon thin films: A review of physical properties. Microelectronics Journal 39:1292-1295 doi: 10.1016/j.mejo.2008.01.019

Dussan A, Mesa F, Botero M, Gordillo G (2009) Electrical and optical properties of thin films with a SnS2 – Bi2S3 alloy grown by sulphurization. Journal of Physics: Conference Series 167:012018 doi: 10.1088/1742- 6596/167/1/012018

Dussan A, Mesa F, Botero M, Gordillo G (2012) Electrical and optical properties of thin films with a SnS2 –Bi2S3 alloy grown by sulphurization. Journal of Physics: Conference Series 167:012018 doi: 10.1088/1742- 6596/167/1/012018

Eginligil M, Zhang W, Kalitsov A, Lu X, Yang H (2012) Tunneling behavior of bismuth telluride nanoplates in electrical transport. Chemical Physics Letters 546:125-128 doi: 10.1016/j.cplett.2012.07.068

Huang X, Wu C, Lu H, Ren F, Chen D et al. (2013) Temperature and gate bias dependence of carrier transport mechanisms in amorphous indium–gallium– zinc oxide thin film transistors. Solid-State Electronics 86:41-44 doi: 10.1016/j.sse.2013.04.025

Kang DW, Kwon JY, Shim J, Lee HM, Han MK (2012) Highly conductive GaN anti-reflection layer at transparent conducting oxide/Si interface for silicon thin film solar cells. Solar Energy Materials and Solar Cells 105:317-321 doi: 10.1016/j.solmat.2012.06.041

Kim SJ, Gunduz B, Yoon DH, Kim HJ, Al-Ghamdic A et al. (2013) Photofield effect and photoresponse properties of the transparent oxide-based BaInZnO thin-film transistors. Sensors and Actuators A: Physical 193:1-12 doi: 10.1016/j.sna.2013.01.002

Koval Y, Lazareva I, Müller P (2011) Coulomb gap variable range hopping in graphitized polymer surfaces. Synthetic Metals 161:528-534 doi: 10.1016/j.synthmet.2011.01.007

Li L, Chung KS, Jang J (2012) Carrier concentration dependent bimolecular recombination coefficient model in two dimensional hopping system. Synthetic Metals 162:702-704 doi: 10.1016/j.synthmet.2012.02.013

Lisunov KG, Guk M, Nateprov A, Levcenko S, Tezlevan V (2013) Features of the acceptor band and properties of localized carriers from studies of the variable-range hopping conduction in single crystals of p-Cu2ZnSnS4.

Mesa F, Dussan A, Gordillo G (2009) Evidence of trapping levels and photoelectric properties of Cu3BiS2 thin films. Physica B: Condensed Matter 404:5227-5230 doi: 10.1016/j.physb.2009.08.302

Miller JB, Ashok T, Lee S, Broitmanet E (2012) Zinc oxidebased thin film functional layers for chemiresistive sensors. Thin Solid Films 520:6669-6676 doi: 10.1016/j. tsf.2012.07.016

Misra SK, Andronenkoa SI, Asthana S, Bahadur D (2010) A variable temperature EPR study of the manganites (La1/3Sm2/3) 2/3SrxBa0.33−xMnO3 (x=0.0, 0.1, 0.2, 0.33): Small polaronhopping conductivity and Griffiths phase. Journal of Magnetism and Magnetic Materials 322:2902-2907 doi: 10.1016/j.jmmm.2010.05.003

Mott NF (1969) Philos. Mag 19:835

Morthekai P, Thomas J, Pandian MS, Balaram V, Singhvi AK (2012) Variable range hopping mechanism in bandtail states of feldspars: A time-resolved IRSL study. Radiation Measurements 47:857-863

Phan BT, Choic T, Romanenko A, Lee J (2012) Hopping and trap controlled conduction in Cr-doped SrTiO3 thin films. Solid-State Electronics 75:43-47 doi: 10.1016/j. sse.2012.05.007

Serin N, Yildiz A, Alsaç AA, Serinet T (2011) Estimation of compensation ratio by identifying the presence of different hopping conduction mechanisms in SnO2 thin films. Thin Solid Films 519:2302-2307 doi: 10.1016/j. tsf.20

Shen HP, Zhao CY (2013) Analytical considerations of light transport in nanostructured homogeneous/ inhomogeneous thin films. Thin Solid Films 542:204-209 doi: 10.1016/j.tsf.2013.06.066

Thamilselvan M, Premnazeer K, Mangalaraj D, Narayandass SK (2003) Field and temperature-dependent electronic transport parameters of amorphous and polycrystalline GaSe thin films. Physica B: Condensed Matter 337:404-412 doi: 10.1016/S0921-4526(03)00444-7

Yadav AA, Masumdar EU (2010) Optical and electrical transport properties of spray deposited CdS1−xSex thin films. Journal of Alloys and Compounds 505:787-792 doi: 10.1016/j.jallcom.2010.06.141

Palavras-Chave #Semiconductors; hopping transport; diffusion model
Tipo

info:eu-repo/semantics/workingPaper

info:eu-repo/semantics/publishedVersion