Cálculo de constantes ópticas de películas delgadas de Cu3BiS3 a través del método de Wolfe
Contribuinte(s) |
Dussan, A Ballesteros, V. NANOTECH |
---|---|
Data(s) |
28/04/2014
|
Resumo |
Se calculó la obtención de las constantes ópticas usando el método de Wolfe. Dichas contantes: coeficiente de absorción (α), índice de refracción (n) y espesor de una película delgada (d ), son de importancia en el proceso de caracterización óptica del material. Se realizó una comparación del método del Wolfe con el método empleado por R. Swanepoel. Se desarrolló un modelo de programación no lineal con restricciones, de manera que fue posible estimar las constantes ópticas de películas delgadas semiconductoras, a partir únicamente, de datos de transmisión conocidos. Se presentó una solución al modelo de programación no lineal para programación cuadrática. Se demostró la confiabilidad del método propuesto, obteniendo valores de α = 10378.34 cm−1, n = 2.4595, d =989.71 nm y Eg = 1.39 Ev, a través de experimentos numéricos con datos de medidas de transmitancia espectral en películas delgadas de Cu3BiS3. Using the Wolfe method, we calculated the procurement of optical constants. These constants, absorption coefficient (α), refraction index of (n) and thin film thickness (d ), are significant in the optical characterization of the material. We compared the Wolfe method with the method employed by R. Swanepoel. To estimate theoptical constants of semiconductor thin films, we developed a constrained nonlinear programming model, based solely, on known transmission data. Ultimately, we presented a solution to this nonlinear programming model for quadratic programming. Through numerical experiments and transmittance spectral data of Cu3BiS3 thin films, we obtained values of a= 10378.34 cm−1, n = 2.4595, d =989.71 nm and Eg= 1.39 Ev, demonstrating the reliability of the proposed method. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
spa |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR Clark AH (1980) Poljwystalline and Amorphous Thin Film Devices (ed) LL Kazmerski, New York,USA, pp 135-152 Csallner AE, Csendes T (1996) the convergence speed of interval methods for global optimization. Computers Math. Applic. 31(4):173-178 http://dx.doi.org/10.1016/0898- 1221(95)00229-4 Dodo A, Davidson RA, Xu N, Nozick L (2007) Application of regional earthquake mitigation optimization. Computers & Operations Research 34:2478-2494 http://dx.doi.org/10.1016/j.cor.2005.09.016 Dorranian D, Dejam L, Mosayebian G (2012) Optical characterization of Cu3N thin film with Swanepoel method. Journal of Theoretical and Applied Physics 6:13 doi: 10.1186/2251-7235-6-13 Du X, Liu J (2011) Global convergence of a spectral Hs conjugate gradient method. Procedia Engineering 15:1487- 1492 http://dx.doi.org/10.1016/j.proeng.2011.08.276 Ehsani MH, Rezagholipour H, Azizi S, GhavamiMirmahalle SF, HosseiniSiyanaki F (2013) Optical and structural properties of cadmium telluride films grown by glancing angle deposition. Phys. Scr. 88: 025602 doi: 10.1088/0031- 8949/88/02/025602 Estrella V, Nair MTS, Nair PK (2003) Semiconducting Cu3BiS3 thin films formed by the solid-state reaction of CuS and bismuth thin films. Semicond. Sci. Technol. 18:190-194 doi: 10.1088/0268-1242/18/2/322 Frausto-Solis J, Gozales M, Lopez R (2009) MICAI 2009: Advances in Artificial Intelligence Lecture Notes in Computer Science (ed) Using Wolfe’s Method in Support Vector Machines Learning Stage. Springer Berlin Heidelberg, Guanajuato, Mexico, pp 488-499 doi: 10.1007/978-3-642-05258-3_43 Gerein N, Haber J (2006) One-Step Synthesis and Optical and Electrical Properties of Thin Film Cu3BiS3 for Use as a Solar Absorber in Photovoltaic Devices. Chem. Mater. 18:6297-6302 doi: 10.1021/cm061453r Gerein N, Haber J, (2006) Synthesis of Cu3BiS3 Thin Films by Heating Metal and Metal Sulphide Precursor Films under Hydrogen Sulphide. Chem. Mater. 18:6289-6396 doi: 10.1021/cm061452z Hager W, Zhang H (2006) A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2:35-58 Heavens O (1991) Optical Properties of Thin Solid Films. Dover Publications Khobragade N, Lamba N (2012) Alternative approach to Wolfe’s modified simplex method for quadratic programming problems. Int. J. Latest Trend Math. 2(1):19-24 Kumar M, Persson C (2013) Cu3BiS3 as a potential photovoltaic absorber with high optical efficiency. Applied Physics Letters 102(6):062109 doi: 10.1063/1.4792751 Lu A, Liu H, Zheng X, Cong W (2011) A variant spectral-type FR conjugate gradient method and its global convergence. Applied Mathematics and Computation 217:5547-5552 http://dx.doi.org/10.1016/j.amc.2010.12.028 Mesa F, Dussan A, Gordillo G (2009) Evidence of trapping levels and photoelectric properties of Cu3BiS3 thin films. Physica B: Condensed Matter 404:5227-5230 http://dx.doi. org/10.1016/j.physb.2009.08.302 Mesa F, Gordillo G, Dittrich T, Ellmer K, Baier R et al. (2010) Transient surface photovoltage of p-type Cu3BiS3. Appl. Phys. Lett. 96:082113 http://dx.doi.org/10.1063/1.3334728 Mesa F, Dussan A, Sandino J, Lichte H (2012) Characterization of Al/Cu3BiS3/buffer/ZnO solar cells structure by TEM. Journal of Nanoparticle Research 14:1054 doi: 10.1007/s11051-012-1054-7 Mesa F, Chamorro W, Vallejo W, Baier R, Dittrich T et al. (2012) Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements. Beilstein J. Nanotechnol. (3):277-284 doi: 10.3762/bjnano.3.31 Mohd IB (2000), Identification of region of attraction for global optimization problem using interval symmetric operator. Applied Mathematics and Computation 110:121- 131 http://dx.doi.org/10.1016/S0096-3003(98)10145-5 Monemara B, Paskova P, Kasic A (2005) Optical properties of InN-the bandgap question. Superlattices and Microstructures 38:38–56 http://dx.doi.org/10.1016/j. spmi.2005.04.006 Murphy AB (2007) Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. Appl. Opt. 46:3133-3143 doi: 10.1364/ AO.46.003133 Prescott ES (2004) Computing solutions to moral-hazard programs using the Dantzig–Wolfe decomposition algorithm. Journal of Economic Dynamics & Control 28:777- 800 http://dx.doi.org/10.1016/S0165-1889(03)00053-8 Ragina AJ, Murali K, Preetha KC, Deepa K, Remadevi TL (2011) A Study of Optical Parameters of Tin Sulphide Thin Films Using the Swanepoel Method. AIP Conf. Proc. 1391:752-754 doi: http://dx.doi.org/10.1063/1.3643669 Sánchez-González J, Diaz A, Guiberteau F (2006) Determination of optical properties in nanostructured thin films using the Swanepoel method. Applied Surface Science 252:6013-6017 http://dx.doi.org/10.1016/j. apsusc.2005.11.009 Shaaban E, Yahia I, El-Metwally E (2012) Validity of Swanepoel's Method for Calculating the Optical Constants of Thick Films. Acta Physica Polonica A 121(3):628-636 Shi Z, Guo J (2009) A new family of conjugate gradient methods. Journal of Computational and Applied Mathematics 224:444-457 http://dx.doi.org/10.1016/j.cam.2008.05.012 Swanepoel R (1983) Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum.16:1214 doi: 10.1088/0022-3735/16/12/023 Xu N, Davidson RA, Nozick LK, Dodo A (2007) The risk-return trade off in optimizing regional earthquake mitigation investment. Structure and Infrastructure Engineering 3:133-146 doi: 10.1080/15732470600591083 Wan Z, Yang Z, Wang Y (2011) New spectral PRP conjugate gradient method for unconstrained optimization. Applied Mathematics Letters 24:16-22 http://dx.doi.org/10.1016/j. aml.2010.08.002 Wolfe P (1959) The simplex method for quadratic programming. Econometrica 27(3):382-398 http://www. jstor.org/stable/1909468 Zhang Z, Zhang H (2011) An Efficient and Concise Algorithm for Convex Quadratic Programming and Its Application to Markowitz’s Portfolio Selection Model. Technology and Investment 2(4):229-239 doi: 10.4236/ti.2011.24024 |
Palavras-Chave | #Cu3BiS3 thin films; optical constants; Wolfe method. |
Tipo |
info:eu-repo/semantics/workingPaper info:eu-repo/semantics/publishedVersion |