995 resultados para Self-assembled thin films
Resumo:
Picosecond pulsed laser (10.4 ps, 1064 nm, 5 and 50 kHz) patterning studies were performed, of PEDOT:PSS thin films of varying thickness deposited by spin coating on glass substrates, by ablating the films or by changing locally by laser irradiation the optical and electrical properties of the polymer. From a detailed observation of the morphology of single pulse ablated holes on the surfaces of the films, in combination with simple calculations, it is concluded that photomechanical ablation is the likely ablation mechanism of the films. The single pulse ablation thresholds were measured equal to 0.13-0.18 J/cm 2 for films with thicknesses in the region of ∼100-600 nm. The implications on ablation line patterning of the films using different fluences, scanning speeds and pulse repetition rates, were investigated systematically. Laser irradiation of the films before ablation induces a metal-insulator transition of the polymer because of the formation of charge localization due to a possible creation of molecular disorder in the polymer and shortening of its conjugation length. © 2010 Elsevier B.V. All rights reserved.
Resumo:
The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.
Resumo:
Ga1-xMnxAs films with exceptionally high saturation magnetizations of approximate to 100 emu/cm(3) corresponding to effective Mn concentrations of x(eff)approximate to 0.10 still have a Curie temperature T-C smaller than 195 K contradicting mean-field predictions. The analysis of the critical exponent beta of the remnant magnetization-beta = 0.407(5)-in the framework of the models for disordered/amorphous ferromagnets suggests that this limit on T-C is intrinsic and due to the short range of the ferromagnetic interactions resulting from the small mean-free path of the holes. This result questions the perspective of room-temperature ferromagnetism in highly doped GaMnAs.
Resumo:
The optical properties of GaAs/AlGaAs thin films with photonic crystals were investigated by measuring their photoluminescence spectra. The spectral intensities, lifetimes, and quantum efficiencies decreased greatly compared with those in blank material without photonic crystals. The quantum efficiencies in the material were also calculated from spectral intensities and lifetimes and the quantum efficiencies calculated from those two methods agreed with each other to some extent.
Resumo:
(110) oriented ZnO thin films were epitaxially prepared on (001) SrTiO3 single crystal substrates by a pulsed laser deposition method. The evolution of structure, surface morphology, and electrical conductivity of ZnO films was investigated on changing the growth temperature. Two domain configurations with 90 degrees rotation to each other in the film plane were found to exist to reduce the lattice mismatch between the films and substrates. In the measured temperature range between 80 K and 300 K, the electrical conductivity can be perfectly fitted by a formula of a (T) = sigma(0) + aT(b/2). implying that the electron-phonon scattering might have a significant contribution to the conductivity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The bulge test is successfully extended to the determination of the fracture properties of silicon nitride and oxide thin films. This is achieved by using long diaphragms made of silicon nitride single layers and oxide/nitride bilayers, and applying comprehensive mechanical model that describes the mechanical response of the diaphragms under uniform differential pressure. The model is valid for thin films with arbitrary z-dependent plane-strain modulus and prestress, where z denotes the coordinate perpendicular to the diaphragm. It takes into account the bending rigidity and stretching stiffness of the layered materials and the compliance of the supporting edges. This enables the accurate computation of the load-deflection response and stress distribution throughout the composite diaphragm as a function of the load, in particular at the critical pressure leading to the fracture of the diaphragms. The method is applied to diaphragms made of single layers of 300-nm-thick silicon nitride deposited by low-pressure chemical vapor deposition and composite diaphragms of silicon nitride grown on top of thermal silicon oxide films produced by wet thermal oxidation at 950 degrees C and 1050 degrees C with target thicknesses of 500, 750, and 1000 mn. All films characterized have an amorphous structure. Plane-strain moduli E-ps and prestress levels sigma(0) of 304.8 +/- 12.2 GPa and 1132.3 +/- 34.4 MPa, respectively, are extracted for Si3N4, whereas E-ps = 49.1 +/- 7.4 GPa and sigma(0) = -258.6 +/- 23.1 MPa are obtained for SiO2 films. The fracture data are analyzed using the standardized form of the Weibull distribution. The Si3N4 films present relatively high values of maximum stress at fracture and Weibull moduli, i.e., sigma(max) = 7.89 +/- 0.23 GPa and m = 50.0 +/- 3.6, respectively, when compared to the thermal oxides (sigma(max) = 0.89 +/- 0.07 GPa and m = 12.1 +/- 0.5 for 507-nm-thick 950 degrees C layers). A marginal decrease of sigma(max) with thickness is observed for SiO2, with no significant differences between the films grown at 950 degrees C and 1050 degrees C. Weibull moduli of oxide thin films are found to lie between 4.5 +/- 1.2 and 19.8 +/- 4.2, depending on the oxidation temperature and film thickness.
Resumo:
This paper reports the mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates. Using bulge testing combined with a refined load-deflection model of long rectangular membranes, which takes into account the bending stiffness and prestress of the membrane material, the Young's modulus, prestress, and fracture strength for the 3C-SiC thin films with thicknesses of 0.40 and 1.42 mu m were extracted. The stress distribution in the membranes under a load was calculated analytically. The prestresses for the two films were 322 +/- 47 and 201 +/- 34 MPa, respectively. The thinner 3C-SiC film with a strong (111) orientation has a plane-gstrain moduli of 415 +/- 61 GPa, whereas the thicker film with a mixture of both (111) and (110) orientations exhibited a plane-strain moduli of 329 +/- 49 GPa. The corresponding fracture strengths for the two kinds of SiC films were 6.49 +/- 0.88 and 3.16 +/- 0.38 GPa, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over edge, surface, and volume of the specimens and were fitted with Weibull distribution function. For the 0.40-mu m-thick membranes, the surface integration has a better agreement between the data and the model, implying that the surface flaws are the dominant fracture origin. For the 1.42-mu m-thick membranes, the surface integration presented only a slightly better fitting quality than the other two, and therefore, it is difficult to rule out unambiguously the effects of the volume and edge flaws.
Resumo:
电子邮箱nataliya.deyneka@uni-ulm.de
Resumo:
The authors report the optical characteristics of GaSb/InAs/GaAs self-assembled heterojunction quantum dots (QDs). With increasing GaSb deposition, the room temperature emission wavelength can be extended to 1.56 mu m. The photoluminescence mechanism is considered to be a type-II transition with electrons confined in InAs and holes in GaSb.(C) 2008 American Institute of Physics.
Resumo:
We report a quantum dot (QD) ensemble structure in which the in-plane arrangements of the dots are in a hexagonal way while the dots are also vertically aligned. Such a distinct lateral ordering of QDs is achieved on a planar GaAs(l 0 0) rather than on a prepatterned substrate by strain-mediated multilayer vertical stacking of the QDs. The analysis indicates that the strain energy of the lateral island-island interaction is minimum for arrangement of the hexagonal ordering. The ordered dots demonstrate strong photoluminescence (PL) emission at room temperature (RT) and the full width at half maximum of PL peak at RT is only 50 meV. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The dynamics of spontaneous emission from GaAs slabs with photonic crystals etched into them are investigated both theoretically and experimentally. It is found that the intensity of spontaneous emission decreases significantly and that photonic crystals significantly shorten the lifetime of emission. The mechanics of enhancement and the reduction of emission from photonic crystals are analyzed by considering the surface recombination of GaAs. The measured and calculated lifetimes agree at a surface recombination velocity of 1.88x10(5) cm/s.
Resumo:
(Na1-xKx)(0.5)Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n(2) increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility chi((3)) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Aluminum nitride (AIN) thin films were deposited on Si (111) substrates by low pressure metalorganic chemical vapor deposition system. The effects of the V/III ratios on the film structure and surface morphology were systematically studied. The chemical states and vibration modes of AIN films were characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer. The optical absorption property of the AIN films, characterized by ultraviolet-visible-near infrared spectrophotometer, exhibited a sharp absorption near the wavelength of 206 mm. The AIN (002) preferential orientation growth was obtained at the V/III ratio of 10,000 and the preferential growth mechanism is presented in this paper according to the thermodynamics and kinetics process of the AIN growth.
Resumo:
Self-assembled InAs quantum dots were prepared on GaAS(100)) substrate in a solid source molecular beam epitaxy system The distribution and topographic images of uncapped dots were studied by atomic force microscope. The statistical result shows that the quantum dots are bimodal distribution. The photoluminescence spectrum results shows that the intensity of small size quantum dots dominated, which may be due to: (1) the state density of large quantum dots lower than that of small quantum dots; (2) the carriers capture rate of large size quantum dots is small relative to that of small ones; (3) there is a large strain barrier between large quantum dots and capping layer, and the large strain is likely to produce the defect and dislocation, resulting in a probability carriers transferring from large quantum dots to small dots that is very small with temperature increasing.
Resumo:
The density of states (DOS) above Fermi level of hydrogenated microcrystalline silicon (mu c-Si H) films is correlated to the material microstructure. We use Raman scattering and infrared absorption spectra to characterize the structure of the films made with different hydrogen dilution ratios. The DOS of the films is examined by modulated photocurrent measurement. The results have been accounted for in the framework of a three-phase model comprised of amorphous and crystalline components, with the grain boundary as the third phase. We observed that the DOS increases monotonically as the grain boundary volume fractions f(gb) is increased, which indicates a positive correlation between the DOS and the grain boundary volume fraction.