860 resultados para PLASTIC SOLIDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To test the strength to failure and fracture mode of three indirect composite materials directly applied onto Ti-6Al-4V implant abutments vs cemented standard porcelain-fused-to-metal (PFM) crowns. Materials and Methods: Sixty-four locking taper abutments were randomly allocated to four groups and were cleaned in ethanol in an ultrasonic bath for 5 min. After drying under ambient conditions, the abutments were grit blasted and a custom 4-cusp molar crown mold was utilized to produce identical crowns (n = 16 per group) of Tescera (Bisco), Ceramage (Shofu), and Diamond Crown (DRM) according to the manufacturer`s instructions. The porcelain-fused-to-metal crowns were fabricated by conventional means involving the construction and a wax pattern and casting of a metallic coping followed by sintering of increasing layers of porcelain. All crowns were loaded to failure by an indenter placed at one of the cusp tips at a 1 mm/min rate. Subsequently, fracture analysis was performed by means of stereomicroscopy and scanning electron microscopy. One-way ANOVA at 95% level of significance was utilized for statistical analysis. Results: The single load to failure (+/- SD) results were: Tescera (1130 +/- 239 N), Ceramage (1099 +/- 257 N), Diamond Crown (1155 +/- 284 N), and PFM (1081 +/- 243 N). Stereomicroscopy analysis showed two distinct failure modes, where the loaded cusp failed either with or without abutment/metallic coping exposure. SEM analysis of the fractures showed multiple crack propagation towards the cervical region of the crown below a region of plastic deformation at the indenter contact region. Conclusion: The three indirect composites and PFM systems fractured at loads higher than those typically associated with normal occlusal function. Although each material had a different composition and handling technique, no significant differences were found concerning their single load to fracture resistance among composite systems and PFM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The objective of this study was to evaluate the stress on the cortical bone around single body dental implants supporting mandibular complete fixed denture with rigid (Neopronto System-Neodent) or semirigid splinting system (Barra Distal System-Neodent). Methods and Materials: Stress levels on several system components were analyzed through finite element analysis. Focusing on stress concentration at cortical bone around single body dental implants supporting mandibular complete fixed dentures with rigid ( Neopronto System-Neodent) or semirigid splinting system ( Barra Distal System-Neodent), after axial and oblique occlusal loading simulation, applied in the last cantilever element. Results: The results showed that semirigid implant splinting generated lower von Mises stress in the cortical bone under axial loading. Rigid implant splinting generated higher von Mises stress in the cortical bone under oblique loading. Conclusion: It was concluded that the use of a semirigid system for rehabilitation of edentulous mandibles by means of immediate implant-supported fixed complete denture is recommended, because it reduces stress concentration in the cortical bone. As a consequence, bone level is better preserved, and implant survival is improved. Nevertheless, for both situations the cortical bone integrity was protected, because the maximum stress level findings were lower than those pointed in the literature as being harmful. The maximum stress limit for cortical bone (167 MPa) represents the threshold between plastic and elastic state for a given material. Because any force is applied to an object, and there is no deformation, we can conclude that the elastic threshold was not surpassed, keeping its structural integrity. If the force is higher than the plastic threshold, the object will suffer permanent deformation. In cortical bone, this represents the beginning of bone resorption and/or remodeling processes, which, according to our simulated loading, would not occur. ( Implant Dent 2010; 19:39-49)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The weaver mouse represents the only genetic animal model of gradual nigrostriatal dopaminergic neurodegeneration which is proposed as a pathophysiological phenotype of Parkinson`s disease. The aim of the present study was to analyze the nitric oxide and dopaminergic systems in selected brain regions of homozygous weaver mice at different postnatal ages corresponding to specific stages of the dopamine loss. Structural deficits were evaluated by quantification of tyrosine hydroxylase and neuronal nitric oxide synthase-immunostaining in the cortex, striatum, accumbens nuclei, subthalamic nuclei, ventral tegmental area, and substantia nigra compacta of 10-day, 1- and 2-month-old wildtype and weaver mutant mice. The results confirmed the progressive loss of dopamine during the postnatal development in the adult weaver mainly affecting the substantia nigra pars compacta, striatum, and subthalamic nucleus and slightly affecting the accumbens nuclei and ventral tegmental area. A general decrease in neuronal nitric oxide synthase-immunostaining with age was revealed in both the weaver and wild-type mice, with the decrease being most pronounced in the weaver. In contrast, there was an increase in the substantia nigra pars compacta nitric oxide synthase-immunostaining and a decrease mainly in the subthalamic and accumbens nuclei of the 2-month-old weaver mutant. The decrease in the expression of nNOS may bear functional significance related to the process of aging. DA neurons from the substantia nigra directly modulate the activity of subthalamic nucleus neurons, and their loss may contribute to the abnormal activity of subthalamic nucleus neurons. Although the functional significance of these changes is not clear, it may represent plastic compensating adjustments resulting from the loss of dopamine innervation, highlighting a possible role of nitric oxide in this process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(L-lactic acid) (PLA) is a polymer of great technological interest, whose excellent mechanical properties, thermal plasticity and bioresorbability render it potentially useful for environmental applications, as a biodegradable plastic and as a biocompatible material in biomedicine. The interactions between an implant material surface and host cells play central roles in the integration, biological performance and clinical success of implanted biomedical devices. Osteoblasts from human alveolar bone were chosen to investigate the cell behaviour when in contact with PLA discs. Cell morphology and adhesion through osteopontin (OPN) and fibronectin (FN) expression were evaluated in the initial osteogenesis, as well as cell proliferation, alkaline phosphatase activity and bone nodule formation. It was shown that the polymer favoured cell attachment. Cell proliferation increased until 21 days but in a smaller rate when compared to the control group. On the other hand, ALP activity and bone mineralization were not enhanced by the polymer. It is suggested that this polymer favours cell adhesion in the early osteogenesis in vitro, but it does not enhance differentiation and mineralization. (C) Koninklijke Brill NV, Leiden, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate bacterial leakage along the implant-abutment interface under unloaded conditions. Twelve premachined abutments with plastic sleeves and 12 dental implants were used in this study. Prior to tests of bacterial leakage, samples from the inner parts of the implants were collected with sterile microbrushes to serve as negative controls for contamination. After casting, the abutments were tightened to 32 Ncm on the implants. The assemblies were immersed in 2.0 mL of human saliva and incubated for 7 days. After this period, possible contamination of the internal parts of the implants was evaluated using the DNA Checkerboard method. Microorganisms were found in the internal surfaces of all the implants evaluated. Aggregatibacter actinomycetemcomitans and Capnocytophaga gingivalis were the most incident species. No microorganisms were found in the samples recovered from the implants before contamination testing (negative control). Bacterial species from human saliva may penetrate the implant-abutment interface under unloaded conditions. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:782-787

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is no consensus in literature regarding the best plan for prosthetic rehabilitation with partial multiple adjacent implants to minimize stress generated in the bone-implant interface. The aim of this study was to evaluate the biomechanical behavior of cemented fixed partial dentures, splinted and nonsplinted, on Morse taper implants and with different types of coating material (ceramic and resin), using photoelastic stress analysis. A photoelastic model of an interposed edentulous space, missing a second premolar and a first molar, and rehabilitated with 4 different types of cemented crowns and supported by 2 adjacent implants was used. Groups were as follows: UC, splinted ceramic crowns; IC, nonsplinted ceramic crowns; UR, splinted resin crowns; and IR, nonsplinted resin crowns. Different vertical static loading conditions were performed: balanced occlusal load, 10 kgf; simultaneous punctiform load on the implanted premolar and molar, 10 kgf; and alternate punctiform load on the implanted premolar and molar, 5 kgf. Changes in stress distribution were analyzed in a polariscope, and digital photographs were taken of each condition to allow comparison of stress pattern distribution around the implants. Cementation of the fixed partial dentures generated stresses between implants. Splinted restorations distributed the stresses more evenly between the implants than nonsplinted when force was applied. Ceramic restorations presented better distribution of stresses than resin restorations. Based on the results obtained, it was concluded that splinted ceramic restorations promote better stress distribution around osseointegrated implants when compared with nonsplinted crowns; metal-ceramic restorations present less stress concentration and magnitude than metal-plastic restorations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives Bacterial penetration along the implant-abutment interface as a consequence of abutment screw loosening has been reported in a number of recent studies. The aim of this in vitro study was to investigate the influence of repeated tightening of the abutment screw on leakage of Streptococcus mutans along the interface between implants and pre-machined abutments. Materials and methods Twenty pre-machined abutments with a plastic sleeve were used. The abutment screws were tightened to 32 N cm in group 1 (n=10 - control) and to 32 N cm, loosened and re-tightened with the same torque twice in group 2 (n=10). The assemblies were completely immersed in 5 ml of Tryptic Soy Broth medium inoculated with S. mutans and incubated for 14 days. After this period, contamination of the implant internal threaded chamber was evaluated using the DNA Checkerboard method. Results Microorganisms were found on the internal surfaces of both groups evaluated. However, bacterial counts in group 2 were significantly higher than that in the control group (P < 0.05). Conclusion These results suggest that bacterial leakage between implants and abutments occurs even under unloaded conditions and at a higher intensity when the abutment screw is tightened and loosened repeatedly. To cite this article:do Nascimento C, Pedrazzi V, Kirsten Miani P, Daher Moreira L, de Albuquerque Junior RF. Influence of repeated screw tightening on bacterial leakage along the implant-abutment interface.Clin. Oral Impl. Res. 20, 2009; 1394-1397.doi: 10.1111/j.1600-0501.2009.01769.x.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article modifies the usual form of the Dubinin-Radushkevich pore-filling model for application to liquid-phase adsorption data, where large molecules are often involved. In such cases it is necessary to include the repulsive part of the energy in the micropores, which is accomplished here by relating the pore potential to the fluid-solid interaction potential. The model also considers the nonideality of the bulk liquid phase through the UNIFAC activity coefficient model, as well as structural heterogeneity of the carbon. For the latter the generalized adsorption integral is used while incorporating the pore-size distribution obtained by density functional theory analysis of argon adsorption data. The model is applied here to the interpretation of aqueous phase adsorption isotherms of three different esters on three commercial activated carbons. Excellent agreement between the model and experimental data is observed, and the fitted Lennard-Jones size parameter for the adsorbate-adsorbate interactions compares well with that estimated from known critical properties, supporting the modified approach. On the other hand, the model without consideration of bulk nonideality, or when using classical models of the characteristic energy, gives much poorer bts of the data and unrealistic parameter values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterization of three commercial activated carbons was carried out using the adsorption of various compounds in the aqueous phase. For this purpose the generalized adsorption isotherm was employed, and a modification of the Dubinin-Radushkevich pore filling model, incorporating repulsive contributions to the pore potential as well as bulk liquid phase nonideality, was used as the local isotherm. Eight different flavor compounds were used as adsorbates, and the isotherms were jointly fitted to yield a common pore size distribution for each carbon. The bulk liquid phase nonideality was incorporated through the UNIFAC activity coefficient model, and the repulsive contribution to the pore potential was incorporated through the Steele 10-4-3 potential model. The mean micropore network coordination number for each carbon was also determined from the fitted saturation capacity based on percolation theory. Good agreement between the model and the experimental data was observed. In addition, excellent agreement between the bimodal gamma pore size distribution and density functional theory-cum-regularization-based pore size distribution obtained by argon adsorption was also observed, supporting the validity of the model. The results show that liquid phase adsorption, using adsorptive molecules of different sizes, can be an effective means of characterizing the pore size distribution as well as connectivity. Alternately, if the carbon pore size distribution is independently known, the method can be used to measure critical molecular sizes. (C) 2001 Elsevier Science.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titania sol-pillared clay (TiO2 PILC) and silica-titania sol-pillared clay (SiO2-TiO2 PILC) were synthesized by the sol-gel method. Supercritical drying (SCD) and treatment with quaternary ammonium surfactants were used to tailor the pore structure of the resulting clay. It was found that SCD approach increased the external surface area of the PILCs dramatically and that treatment with surfactants could be used to tailor pore size because the mesopore formation in the galleries between the clay layers follows the templating mechanism as observed in the synthesis of MCM-41 materials. Highly mesoporous solids were thus obtained. In calcined TiO2 PILC, ultrafine crystallites in anatase phase, which are active for photocatalytic oxidation of organics, were observed. In SiO2-TiO2 PILCs and their derivatives, titanium was highly dispersed in the matrix of silica and no crystal phase was observed. The highly dispersed titanium sites are good catalytic centers for selective oxidation of organic compounds. (C) 2001 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC) was used to study the glass transition in 10 Australian honeys by scanning at 10 degrees Cmin(-1) from -130 to 50 degreesC after annealing at -50 degreesC. The honeys had moisture contents 14.9 to 18.0%, seven were from Eucalyptus species. The glass transition temperatures (T-g) ranged from -46 degrees to -38 degreesC and were significantly (p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model has been developed which enables the viscosities of coal ash slags to be predicted as a function of composition and temperature under reducing conditions. The model describes both completely liquid and heterogeneous, i.e. partly crystallised, slags in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. The Urbain formalism has been modified to describe the viscosities of the liquid slag phase over the complete range of compositions and a wide range of temperatures. The computer package F * A * C * T was used to predict the proportions of solids and the compositions of the remaining liquid phases. The Roscoe equation has been used to describe the effect of presence of solid suspension (slurry effect) on the viscosity of partly crystallised slag systems. The model provides a good description of the experimental data of fully liquid, and liquid + solids mixtures, over the complete range of compositions and a wide range of temperatures. This model can now be used for viscosity predictions in industrial slag systems. Examples of the application of the new model to coal ash fluxing and blending are given in the paper. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is believed that surface instabilities can occur during the extrusion of linear low density polyethylene due to high extensional stresses at the exit of the die. Local crack development can occur at a critical stress level when melt rupture is reached. This high extensional stress results from the rearrangement of the flow at the boundary transition between the wall exit and the free surface. The stress is highest at the extrudate surface and decreases into the bulk of the material. The location of the region where the critical level is reached can determine the amplitude of the extrudate surface distortion, This paper studies the effect of wall slip on the numerically simulated extensional stress level at the die exit and correlates this to the experimentally determined amplitude of the surface instability. The effect of die exit radius and die wall roughness on extrusion surface instabilities is also correlated to the exit stress level in the same way. Whereas full slip may completely suppress the surface instability, a reduction in the exit stress level and instability amplitude is also shown for a rounded die exit and a slight increase in instability is shown to result from a rough die wall. A surface instability map demonstrates how the shear rate for onset of extrusion surface instabilities can be predicted on the basis of melt strength measurements and simulated stress peaks at the exit of the die. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.