943 resultados para Laser beam characterization
Resumo:
The influence of organic contamination in vacuum on the laser-induced damage threshold (LIDT) of coatings is studied. TiO2/SiO2 dielectric mirrors with high reflection at 1064 nm are deposited by the electron beam evaporation method. The LIDTs of mirrors are measured in vacuum and atmosphere, respectively. It is found that the contamination in vacuum is easily attracted to optical surfaces because of the low pressure and becomes the source of damage. LIDTs of mirrors have a little change in vacuum compared with in atmosphere when the organic contamination is wiped off. The results indicate that organic contamination is a significant reason to decrease the LIDT. N-2 molecules in vacuum can reduce the influence of the organic contaminations and prtectect high reflectance coatings. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ta2O5 films are prepared on Si, BK7, fused silica, antireflection (AR) and high reflector (HR) substrates by electron beam evaporation method, respectively. Both the optical property and laser induced damage thresholds (LIDTs) at 1064 nm of Ta2O5 films on different substrates are investigated before and after annealing at 673 K for 12h. It is shown that annealing increases the refractive index and decreases the extinction index, and improves the O/Ta ratio of the Ta2O5 films from 2.42 to 2.50. Moreover, the results show that the LIDTs of the Ta2O5 films are mainly correlated with three parameters: substrate property, substoichiometry defect in the films and impurity defect at the interface between the substrate and the films. Details of the laser induced damage models in different cases are discussed.
Resumo:
Ta2O5 films are deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer ( XRD) results. X-ray photoelectron spectroscopy ( XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2O5 film achieves the highest laser induced damage threshold ( LIDT) either at 355 or 1064 nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064 nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy.
Resumo:
LaF3 thin films were prepared by thermal boat evaporation at different substrate temperatures and various deposition rates. X-ray diffraction (XRD), Lambda 900 spectrophotometer and X-ray photoelectron spectroscopy (XPS) were employed to study crystal structure, transmittance and chemical composition of the coatings, respectively. Laser-induce damage threshold (LIDT) was determined by a tripled Nd:YAG laser system with a pulse width of 8 ns. It is found that the crystal structure became more perfect and the refractive index increased gradually with the temperature rising. The LIDT was comparatively high at high temperature. In the other hand, the crystallization status also became better and the refractive index increased when the deposition rate enhanced at a low level. If the rate was super rapid, the crystallization worsened instead and the refractive index would lessen greatly. On the whole, the LIDT decreased with increasing rate. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ta2O5 films were deposited using the conventional electron beam evaporation method and then annealed at temperatures in the range 373-673 K. Chemical composition, scattering and absorption were examined by X-ray photoelectron spectroscopy (XPS), total integrated scattering (TIS) measurement and the surface thermal lensing (m) technique, respectively. The laser-induced damage threshold (LIDT) was assessed using the output from an Nd:YAG laser with a pulse length of 12 ns. The results showed that the improvement of the LIDT after annealing was due to the reduced substoichiometric and structural defects present in the film. The LIDT increased slightly below 573K and then increased significantly with increase in annealing temperature, which could be attributed to different dominant defects. Moreover, the root mean square (RMS) roughness and scattering had little effect on the LIDT, while the absorption and the LIDT were in accord with a general relation. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
HfO2 is one of the most important high refractive index materials for depositing high power optical mirrors. In this research, HfO2 thin films were prepared by dual-ion beam reactive sputtering method, and the laser-induced damage thresholds (LIDT) of the sample were measured in 1-on-1 mode for laser with 1064 nm wavelength. The results indicate that the LIDT of the as-grown sample is only 3.96 J/cm(2), but it is increased to 8.98 J/cm(2) after annealing under temperature of 200 degrees C in atmosphere. By measuring the laser weak absorption and SIMS of the samples, we deduced that substoichiometer is the main reason for the low LIDT of the as-grown sample, and the experiment results were well explained with the theory of electronic-avalanche ionization. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
TiO2 single layers and TiO2/SiO2 high reflectors (HR) are prepared by electron beam evaporation at different TiO2 deposition rates. It is found that the changes of properties of TiO2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in. film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
The well known 'crystal seed' theory is first applied in this work to prepare TiO2 film: a high refractive index rutile TiO2 film is grown by electron beam evaporation on the rutile seed formed by 1100 degrees C annealing. The average n is larger than 2.4, by far the highest in all the authors' TiO2 films. The films are characterised by optical properties, microstructure and surface morphologies. It is found that the refractive index shows positive relation with the crystal structure, grain size, and packing density and roughness of the film. The film has lower density of granularity and nodule defects on the surface than those of the film deposited by magnetron sputtering. The result shows attractive application in complex filter and laser coatings.
Resumo:
Alguns Bastonetes Gram-negativos não fermentadores (BGNNF) costumam ser considerados clinicamente pouco significantes e a sua implicação em infecções é subestimada. Devido à similaridade fenotípica, mudanças taxonômicas, baixa reatividade bioquímica e limitações nos bancos de dados em sistemas comerciais, a identificação de BGNNF é frequentemente equivocada, culminando com a denominação de diferentes micro-organismos apenas como BGNNF, por falta de melhor diferenciação. O objetivo desse estudo foi avaliar, por métodos fenotípico convencional, proteômico e molecular, a identificação de BGNNF incomuns isolados em hemoculturas de pacientes atendidos em um hospital universitário no Rio de Janeiro. Foram selecionadas 78 amostras isoladas de hemoculturas caracterizadas no laboratório clinico como BGNNF para a identificação por sequenciamento dos genes 16S RNA e recA, por um conjunto amplo de testes fenotípicos manuais e por MALDI-TOF MS. Os micro-organismos predominantes na amostragem foram genotipados pela técnica de eletroforese em gel de campo pulsado (PFGE). Pelo sequenciamento do gene 16S rRNA, a maioria das amostras (n=31; 40%) foi incluída no gênero Burkholderia, seguido de Pseudomonas stutzeri (10%) e Delftia acidovorans (4%). Os demais isolados foram agrupados em 27 diferentes espécies. O sequencimento do gene recA identificou a maioria das espécies de Burkholderia como Burkholderia contaminans (n=19; 24%). Os testes fenotípicos incluíram as 31 amostras apenas no CBc e para as outras 47 amostras, a concordância com o sequenciamento do gene 16S rRNA em nível de espécie foi de 64% (n=30) e apenas em gênero a concordância foi de 17% (n=8). A análise comparativa geral da identificação por MALDI-TOF MS com o sequenciamento do gene16S rRNA mostrou que 42% (n=33) das 78 amostras foram concordantes em nível de espécie e 45% (n=35) apenas em gênero. Excluindo as amostras do CBc, houve um aumento da concordância em nível de espécie para 60%. As discordâncias parecem ser devido às diferenças nos perfis proteicos das amostras em relação às amostras-referência do banco de dados do equipamento e podem ser aprimorados com a atualização de perfis no sistema. A análise do polimorfismo genético de B. contaminans mostrou a ausência de um clone disseminado causando surto, além da provável origem ambiental das infecções. Os setores de nefrologia e hemodiálise contribuíram com maior número de pacientes com amostras positivas (5 pacientes e 9 amostras). Os grupos clonais BcoD e BcoE foram encontrados em pacientes assistidos no mesmo setor com diferença de quatro meses (BcoD, nefrologia) e 1,5 ano (BcoE, hemodilálise), entre as culturas, respectivamente. As discordâncias entre as técnicas ocorreram principalmente devido a dificuldade de identificação das espécies do CBc. Os BGNNF incomuns são de difícil caracterização independente da metodologia usada e nenhum método por si só foi capaz de identificar todas as amostras.
Resumo:
The potential of 1.3-μm AlGaInAs multiple quantum-well (MQW) laser diodes for uncooled operation in high-speed optical communication systems is experimentally evaluated by characterizing the temperature dependence of key parameters such as the threshold current, transparency current density, optical gain and carrier lifetime. Detailed measurements performed in the 20°C-100°C temperature range indicate a localized T0 value of 68 K at 98°C for a device with a 2.8μm ridge width and 700-μm cavity length. The transparency current density is measured for temperatures from 20°C to 60°C and found to increase at a rate of 7.7 A·cm -2 · °C-1. Optical gain characterizations show that the peak modal gain at threshold is independent of temperature, whereas the differential gain decreases linearly with temperature at a rate of 3 × 10-4 A-1·°C-1. The differential carrier lifetime is determined from electrical impedance measurements and found to decrease with temperature. From the measured carrier lifetime we derive the monomolecular (A), radiative (B), and nonradiative Auger (C) recombination coefficients and determine their temperature dependence in the 20 °C-80 °C range. Our study shows that A is temperature independent, B decreases with temperature, and C exhibits a less pronounced increase with temperature. The experimental observations are discussed and compared with theoretical predictions and measurements performed on other material systems. © 2005 IEEE.
Resumo:
Wavelength conversion in the 1550 nm regime was achieved in an integrated semiconductor optical amplifier (SOA)/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. A 12 dB output extinction ratio was obtained for an average coupled input power of 75 μW with the laser section driven at 65 mA and the amplifier section at 180 mA. The response time achieved was as low as 13 ps with the laser biased at 175 mA even with low extinction ratios. The laser exhibits a similar recovery time allowing potentially very high bit-rate operation.
Resumo:
Wavelength conversion in the 1.55-μm regime was achieved for the first time in an integrated SOA/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. In terms of speed, response times as low as 13ps were observed, though at the expense of reduced extinction ratio. Generally, these results indicate that operation in the 10s of GB/s should be possible.
Resumo:
Photoluminescence experiments have identified strain as the origin for polarization pinning in vertical cavity surface emitting lasers post-processed by focused ion beam etching. Theoretical models were applied to deduce the strain in devices. Post-annealing was used to optimize polarization pinning.
Resumo:
DLC films with different thicknesses (from 100 nm to 1.9 μm) were deposited using sputtering of graphite target in pure argon atmosphere without substrate heating. Film microstructures (sp2/sp3 ratio) and mechanical properties (modulus, hardness, stress) were characterized as a function of film thickness. A thin layer of aluminum about 60 nm was deposited on the DLC film surface. Laser micromachining of Al/DLC layer was performed to form microcantilever structures, which were released using a reactive ion etching system with SF6 plasma. Due to the intrinsic stress in DLC films and bimorph Al/DLC structure, the microcantilevers bent up with different curvatures. For DLC film of 100 nm thick, the cantilever even formed microtubes. The relationship between the bimorph beam bending and DLC film properties (such as stress, modulus, etc.) were discussed in details. © 2005 Elsevier B.V. All rights reserved.