999 resultados para Landau level
Resumo:
An LCAO scheme taking into account 10 atomic orbitals (s-, p-, and d-type) applied to a supercell containing 256 atoms is used to calculate the bound states of the reconstructed 90-degrees partial dislocation in Si. The results differ significantly from our earlier calculations on the unreconstructed 90-degrees partial using the same method. We find two bands separate from each other in the entire Brillouin zone and the upper band penetrates deep into the indirect band gap which is in contradiction with the general opinion that core reconstruction clears the band gap of dislocation states.
Resumo:
The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.
Resumo:
The results of a reflectance-difference spectroscopy study of GaAs grown on (100) GaAs substrates by low-temperature molecular-beam epitaxy (LT-GaAs) are presented. In-plane optical anisotropy resonances which come from the linear electro-optic effect produced by the surface electric field are observed. The RDS line shape of the resonances clearly shows that the depletion region of LT-GaAs is indeed extremely narrow (much less than 200 Angstrom). The surface potential is obtained from the RDS resonance amplitude without the knowledge of space-charge density. The change of the surface potential with post-growth annealing temperatures reflects a complicated movement of the Fermi level in LT-GaAs. The Fermi level still moves for samples annealed at above 600 degrees C, instead of being pinned to the As precipitates. This behavior can be explained by the dynamic properties of defects in the annealing process.
Resumo:
Using deep level transient spectroscopy (DLTS) the X conduction-subband energy levels in an AlAs well sandwiched by double GaAs layers were determined. Calculation gives eight subbands in the well with well width of 50 Angstrom. Among them, five levels and the other three remainders are determined by using the large longitudinal electron effective mass m(1)(1.1m(0)) and transverse electron effective mass m(t)(0.19m(0)) at X valley, respectively. Two subbands with the height energies were hardly detectable and the other six ones with lower energies are active in the present DLTS study. Because these six subbands are close to each other, we divided them into three groups. Experimentally, we observed three signals induced from the three groups. A good agreement between the calculation and experiment was obtained. (C) 1995 American Institute of Physics.
Resumo:
This paper analyzes the energy levels along the even-parity J=1 and 2 Rydberg series of Sn I by multichannel quantum defect theory. A good agreement between theoretical and experimental energy levels was achieved. Below 59198 cm~(-1), a total of 85 and 23 new energy levels, respectively, in the J=1 and J=2 series, which cannot be measured previously by experiments, are predicted in this work. Based on the calculated admixture coefficients of each channel, interchannel interactions were discussed in detail. The results are helpful to understand the characteristics of configuration interaction among even-parity levels in Sn I.
Resumo:
Semi-insulating (SI) InP materials have been prepared under different stoichiometric conditions, including Fe-doping in indium-rich melt and high temperature annealing undoped wafer in phosphorus and iron phosphide ambients. Deep level defects related with non-stoichiometry have been detected in the SI-InP samples. A close relationship between the material quality of electrical property and native deep defects has been revealed by a comprehensive study of defects in as-grown Fe-doped and annealed undoped SI-InP materials. Fe-doped SI-InP material with low carrier mobility and poor thermal stability contains a high concentration of deep defects with energy levels in the range of 0.1-0.4eV. The suppression of the defects by high temperature annealing undoped InP leads to the manufacture of high quality SI-InP with high mobility and good electrical uniformity. A technology for the growth of high quality SI-InP through stoichiometry control has been proposed based on the results.
Resumo:
A fitting process is used to measure the cavity loss and the quasi-Fermi-level separation for Fabry- Perot semiconductor lasers. From the amplified spontaneous emission (ASE) spectrum, the gain spectrum and single-pass ASE obtained by the Cassidy method are applied in the fitting process. For a 1550nm quantum well InGaAsP ridge waveguide laser, the cavity loss of about ~24cm~(-1) is obtained.
Resumo:
The Fermi-level pinning (FLP) at the metal/high-k interface and its dependence on the electron state density of the metal gate are investigated. It is found that the FLP is largely determined by the distortion of the vacuum level of the metal which is quantitatively ruled by the electron state density of the metal. The physical origin of the vacuum level distortion of the metal is attributed to an image charge of the interface charge in the metal. Such results indicate that the effective work function of the metal/high-k stack is also governed by the electron state density of the metal.
Resumo:
Intersubband absorption energy shifts in 3-level system stemming from depolarization and excitonlike effects are investigated. Analytically, the expressions we derive present good explanations to the conventional 2-level results and bare potential transition energy results; and numerical results show that they are more exact than the previous studies to describe the 3-level system depolarization and excitonlike shift (DES) character especially for higher carrier density (more than 8 x 10(11) cm(-2)). One interesting detail we find is that the "large blue" DES becomes "slight redshift" in the low doping limit (less than 1.9 x 10(11) cm(-2)), which may be neglected by the previous studies of intersubband transitions. Temperature character of DES in the step well structure is also numerically studied. Finally the above are applied to calculate asymmetric step quantum well structures. The two main functional aspects of terahertz (THz) emitters are discussed and several basic optimizing conditions are considered. By adjusting the well geometry parameters and material composition systematically, some optimized structures which satisfy all of the six conditions are recommended in tables. These optimizations may provide useful references to the design of 3-level-based optically pumping THz emitters.