967 resultados para Dental Enamel Solubility
Resumo:
The Boyadjian et al dental wash technique provides, in certain contexts, the only chance to analyze and quantify the use of plants by past populations and is therefore an important milestone for the reconstruction of paleodiet. With this paper we present recent investigations and results upon the influence of this method on teeth. A series of six teeth from a three thousand years old Brazilian shellmound (Jabuticabeira II) was examined before and after dental wash. The main focus was documenting the alteration of the surfaces and microstructures. The status of all teeth were documented using macrophotography, optical light microscopy, and atmospheric Secondary Electron Microscopy (aSEM) prior and after applying the dental wash technique. The comparison of pictures taken before and after dental wash showed the different degrees of variation and damage done to the teeth but, also, provided additional information about microstructures, which have not been visible before. Consequently we suggest that dental wash should only be carried out, if absolutely necessary, after dental pathology, dental morphology and microwear studies have been accomplished. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. Methods: 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. Results: The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were frequencies of nuclear alterations indicate of apoptosis (P < 0.001). Conclusions: These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.
Resumo:
In vitro studies have provided conflicting evidence of temperature changes in the tooth pulp chamber after low-level laser irradiation of the tooth surface. The present study was an in vitro evaluation of temperature increases in the human tooth pulp chamber after diode laser irradiation (GaAlAs, lambda = 808 nm) using different power densities. Twelve human teeth (three incisors, three canines, three premolars and three molars) were sectioned in the cervical third of the root and enlarged for the introduction of a thermocouple into the pulp chamber. The teeth were irradiated with 417 mW, 207 mW and 78 mW power outputs for 30 s on the vestibular surface approximately 2 mm from the cervical line of the crown. The highest average increase in temperature (5.6A degrees C) was observed in incisors irradiated with 417 mW. None of the teeth (incisors, canines, premolars or molars) irradiated with 207 mW showed temperature increases higher than 5.5A degrees C that could potentially be harmful to pulp tissue. Teeth irradiated with 78 mW showed lower temperature increases. The study showed that diode laser irradiation with a wavelength of 808 nm at 417 mW power output increased the pulp chamber temperature of certain groups of teeth, especially incisors and premolars, to critical threshold values for the dental pulp (5.5A degrees C). Thus, this study serves as a warning to clinicians that ""more"" is not necessarily ""better"".
Resumo:
Background Anxiety related to dental treatment is a fairly common phenomenon. Some studies have shown that there is an association between dental anxiety and general fears and anxiety, neuroticism and general psychological distress. Aim This study was designed to examine the relationship between dental anxiety and trait anxiety. Subjects and methods The sample consisted of 1,030 individuals (688 women; 342 men), aged 30.8 +/- 11.7 years. The Portuguese version of Corah`s Dental Anxiety Scale (DAS) and State-Trait Anxiety Inventory (STAI-T) were used. Results A statistically significant association between high DAS and high STAI-T, but not between high STAI-T and high DAS, was found. The data indicated that subjects with high dental anxiety tend to present with high trait anxiety, but high trait anxiety seems not to predispose to high dental anxiety. Conclusions Our results indicate that dental anxiety is specific, with its own features, and its development is not necessarily associated with trait anxiety.
Resumo:
Aim It is well reported in the scientific literature that there is a high level of periodontal disease and lower caries prevalence in Down Syndrome (DS) individuals, when compared with age-matched non DS individuals. This study was conducted to investigate the process of dental caries in DS children. Materials and methods In this study the following parameters were considered: oral hygiene habits, levels of Streptococcus mutans (SM) and Lactobacillus spp. (LB), Modified Gingival Index (MGI), and Simplified Oral Hygiene Index (OHI-S). A case group with DS children (n=69) and a control group of non DS children (n=69) were formed to perform this study Dental caries severity was determined using the DMFT index. Samples of non-stimulated saliva were collected to determine the Lactobacillus spp levels. For SM levels, MSB agar plates were used. Results The findings revealed that the case group attended, dental check-ups more frequently brushed their teeth more times per day, flossed less, and also more frequently had SM levels classified as ""high count"". The MGI was higher and the OHI-S was lower than the control group (p<0.001). Conclusion No significant differences were found between the DMFT indexes of children from the two groups (p=0.345). The logistic regression analysis showed that in the case group, age, MGI, and SM count were positively related to dental caries (p<0.05).
Resumo:
We have investigated the thermal and structural properties of different commercial dental resins: Filtek(TM) Z-350, Grandio(A (R)), Tetric Ceram(A (R)), and TPH Spectrum(A (R)). The purpose of the present study was to evaluate quantitatively the photo-polymerization behavior and the effect of filler contents on the kinetic cures of the dental resins by using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. We have successfully obtained the low and high glass transition T (g) values of the dental composite resins from DSC curves. It was also observed a good agreement between the both T (g) values, activation energies from thermal degradation, and the degree of conversion obtained for all samples. The results have shown that Tetric Ceram(A (R)) dental resin presented the higher T (g) values, activation energy of 215 +/- A 6 KJ mol(-1), and the higher degree of conversion (63%) when compared to the other resins studied herein.
Resumo:
The purpose of this study was to evaluate the effect of pre-heating resin composite photo-cured with light-curing units (LCU) by FT-IR. Twenty specimens were made in a metallic mold (4 mm diameter x 2 mm thick) from composite resin-Tetric Ceram (R) (Ivoclar/Vivadent) at room temperature (25 degrees C) and pre heated to 37, 54, and 60 degrees C. The specimens were cured with halogen curing light (QTH) and light emitted by diodes (LED) during 40 s. Then, the specimens were pulverized, pressed with KBr and analyzed with FT-IR. The data were submitted to statistical analysis of variance and Kruskal-Wallis test. Study data showed no statistically significant difference to the degree of conversion for the different light curing units (QTH and LED) (p > 0.05). With the increase of temperature there was significant increase in the degree of conversion (p < 0.05). In this study were not found evidence that the light curing unit and temperature influenced the degree of conversion.
Resumo:
The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.
Resumo:
The structural and thermal properties of three different dental composite resins, Filtek (TM) Supreme XT, Filtek (TM) Z-250 and TPHA (R)(3) were investigated in this study. The internal structures of uncured and cured resins with blue light-emitting diodes (LEDs) were examined by Micro-Raman spectroscopy. Thermal analysis techniques as DSC, TG and DTG methods were used to investigate the temperature characteristics, as glass transition (T (g) ), degradation, and the thermal stability of the resins. The results showed that the TPHA (R)(3) and Filtek (TM) Supreme XT presented very similar T (g) values, 48 and 50A degrees C, respectively, while the Filtek (TM) Z-250 composite resin presented a higher one, 58A degrees C. AFM microscope was utilized in order to analyze the sample morphologies, which possess different fillers. The composed resin Filtek (TM) Z-250 has a well interconnected more homogeneous morphology, suggesting a better degree of conversion correlated to the glass phase transition temperature. The modes of vibration of interest in the resin were investigated using Raman spectroscopy. It was possible to observe the bands representative for the C=C (1630 cm(-1)) and C=O(1700 cm(-1)) vibrations were studied with respect to their compositions and polymerization. It was observed that the Filtek (TM) Z -250 resin presents the best result related to the thermal properties and polymerization after light curing among the other resins.
Resumo:
The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er: YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 mu m, a discrete inflammatory response occurred in only one specimen with an RDT of 214 mu m. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 mu m), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 mu m). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.
Resumo:
The different parameters used for the photoactivation process provide changes in the degree of conversion (DC%) and temperature rise (TR) of the composite resins. Thus, the purpose of this study was to evaluate the DC (%) and TR of the microhybrid composite resin photoactivated by a new generation LED. For the KBr pellet technique, the composite resin was placed into a metallic mould (1-mm thickness and 4-mm diameter) and photoactivated as follows: continuous LED LCU with different power density values (50-1000 mW/cm(2)). The measurements for the DC (%) were made in a FTIR Spectrometer Bomen (model MB-102, Quebec-Canada). The spectroscopy (FTIR) spectra for both uncured and cured samples were analyzed using an accessory for the diffuse reflectance. The measurements were recorded in the absorbance operating under the following conditions: 32 scans, 4-cm(-1) resolution, and a 300 to 4000-cm(-1) wavelength. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of the absorbance intensities of aliphatic C=C (peak at 1638 cm(-1)) against an internal standard before and after the curing of the specimen: aromatic C-C (peak at 1608 cm-1). For the TR, the samples were made in a metallic mould (2-mm thickness and 4-mm diameter) and photoactivated during 5, 10, and 20 s. The thermocouple was attached to the multimeter to allow the temperature readings. The DC (%) and TR were calculated by the standard technique and submitted to ANOVA and Tukey`s test (p < 0.05). The degree of conversion values varied from 35.0 (+/- 1.3) to 45.0 (+/- 2.4) for 5 s, 45.0 (+/- 1.3) to 55.0 (+/- 2.4) for 10 s, and 47.0 (+/- 1.3) to 52.0 (+/- 2.4) for 20 s. For the TR, the values ranged from 0.3 (+/- 0.01) to 5.4 (+/- 0.11)degrees C for 5 s, from 0.5 (+/- 0.02) to 9.3 (+/- 0.28)degrees C for 10 s, and from 1.0 (+/- 0.06) to 15.0 (+/- 0.95)degrees C for 20 s. The power densities and irradiation times showed a significant effect on the degree of conversion and temperature rise.
Resumo:
The purpose of this study was to evaluate the temperature increase during the polymerization process through the use of three different light-curing units with different irradiation times. One argon laser (Innova, Coherent), one halogen (Optilight 501, Demetron), and one blue LED (LEC 1000, MM Optics) LCU with 500 mW/cm(2) during 5, 10, 20, 30, 40, 50, and 60 s of irradiation times were used in this study. The composite resin used was a microhybrid Filtek Z-250 (3M/ESPE) at color A(2). The samples were made in a metallic mold 2 mm in thickness and 4 mm in diameter and previously light-cured during 40 s. A thermocouple (Model 120-202 EAJ, Fenwal Electronic, Milford, MA, USA) was introduced in the composite resin to measure the temperature increase during the curing process. The highest temperature increase was recorded with a Curing Light 2500 halogen LCU (5 and 31 degrees C after 5 and 60 s, respectively), while the lowest temperature increase was recorded for the Innova LCU based on an argon laser (2 and 11 degrees C after 5 and 60 s, respectively). The temperature recorded for LCU based on a blue LED was 3 and 22 degrees C after 5 and 60 s, respectively. There was a quantifiable amount of heat generated during the visible light curing of a composite resin. The amount of heat generated was influenced by the characteristics of the light-curing units used and the irradiation times.
Resumo:
The aim of this study was to evaluate the degree of conversion and hardness of a dental composite resin Filtek (TM) Z-350 (3M ESPE, Dental Products St. Paul, MN) photo-activated for 20 s of irradiation time with two different light guide tips, metal and polymer, coupled on blue LED Ultraled LCU (Dabi Atlante, SP, Brazil). With the metal light tip, power density was of 352 and with the polymer was of 456 mW/cm(2), respectively. Five samples (4 mm in diameter and 2mm in thickness-ISO 4049), were made for each Group evaluated. The measurements for DC (%) were made in a Nexus-470 FT-IR, Thermo Nicolet, E.U.A. Spectroscopy (FTIR). Spectra for both uncured and cured samples were analyzed using an accessory of reflectance diffuse. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm(-1) resolution, 300-4000 cm(-1) wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm(-1)) against internal standard before and after curing of the sample: aromatic C-C (peak at 1610 cm(-1)). The Vickers hardness measurements (top and bottom surfaces) were performed in a universal testing machine (Buehler MMT-3 digital microhardness tester Lake Bluff, Illinois USA). A 50 gf load was used and the indenter with a dwell time of 30 s. The data were submitted to the test t Student at significance level of 5%. The mean values of degree of conversion for the polymer and metal light guide tip no were statistically different (p = 0.8389). The hardness mean values were no statistically significant different among the light guide tips (p = 0.6244), however, there was difference between top and bottom surfaces (p < 0.001). The results show that so much the polymer light tip as the metal light tip can be used for the photo-activation, probably for the low quality of the light guide tip metal.
Resumo:
Dental composite resins possess good esthetic properties, and are currently among the most popular dental restorative materials. Both organic and inorganic phases might influence the material behavior, the filler particle features and rate are the most important factors related to improvement of the mechanical properties of resin composites. Thus, the objective of this study was to evaluate the effect of three different composite resins on the polymerization process by Vickers hardness test. The samples were prepared using three different composite resins, as follow: group I-P-60 (3M/ESPE); group II-Herculite XRV (Kerr), and group III-Durafill (Heraeus-Kulzer). The samples were made in a polytetrafluoroethylene mould, with a rectangular cavity measuring 7 mm in length, 4 mm in width, and 3 mm in thickness. The samples were photo-activated by one light-curing unit based on blue LEDs (Ultrablue III-DMC/Brazil) for 20 and 40 s of irradiation times. The Vickers hardness test was performed 24 h after the photo-activation until the standardized depth of 3 mm. The Vickers hardness mean values varied from 158.9 (+/- 0.81) to 81.4 (+/- 1.94) for P-60, from 138.7 (+/- 0.37) to 61.7 (+/- 0.24) for Herculite XRV, and from 107. 5 (+/- 0.81) to 44.5 (+/- 1.36) for Durafill composite resins photo-activated during 20 s for the 1st and 2nd mm, respectively. During 40 s of photo-activation, the Vickers hardness mean values were: from 181.0 (+/- 0.70) to 15.6 (+/- 0.29) for P-60, and from 161.8 (+/- 0.41) to 11.2 (+/- 0.17) for Herculite XRV composite resins, for the 1st and 3th mm, respectively. For Durafill composite resin the mean values varied from 120.1 (+/- 0.66) to 61.7 (+/- 0.20), for the 1st and 2nd mm, respectively. The variation coefficient (CV) was in the most of the groups lower than 1%, then the descriptive statistic analysis was used. The Vickers hardness mean values for Durafill were lower than P-60 and Herculite XRV composite resins for 20 and 40 s of irradiation time. The polymerization process was greatly affected by the composition of the composite resins.
Resumo:
The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)(2)), divided in groups of 15 teeth each, and analyzed on 7(th), 25(th), and 60(th) day. Group GI - only Ca(OH)(2), GIF- laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip`s area of 0.00785 cm(2), power 50 mW, application time 20 s, dose 255 J/cm(2), energy 2 J. Teeth were capped with Ca(OH)(2), Ca(OH)(2) cement and restored with amalgam. All groups presented pulp repair. On 25(th) day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60(th) day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA