Changes in the temperature of a dental light-cured composite resin by different light-curing units
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
The purpose of this study was to evaluate the temperature increase during the polymerization process through the use of three different light-curing units with different irradiation times. One argon laser (Innova, Coherent), one halogen (Optilight 501, Demetron), and one blue LED (LEC 1000, MM Optics) LCU with 500 mW/cm(2) during 5, 10, 20, 30, 40, 50, and 60 s of irradiation times were used in this study. The composite resin used was a microhybrid Filtek Z-250 (3M/ESPE) at color A(2). The samples were made in a metallic mold 2 mm in thickness and 4 mm in diameter and previously light-cured during 40 s. A thermocouple (Model 120-202 EAJ, Fenwal Electronic, Milford, MA, USA) was introduced in the composite resin to measure the temperature increase during the curing process. The highest temperature increase was recorded with a Curing Light 2500 halogen LCU (5 and 31 degrees C after 5 and 60 s, respectively), while the lowest temperature increase was recorded for the Innova LCU based on an argon laser (2 and 11 degrees C after 5 and 60 s, respectively). The temperature recorded for LCU based on a blue LED was 3 and 22 degrees C after 5 and 60 s, respectively. There was a quantifiable amount of heat generated during the visible light curing of a composite resin. The amount of heat generated was influenced by the characteristics of the light-curing units used and the irradiation times. |
Identificador |
LASER PHYSICS, v.18, n.8, p.1003-1007, 2008 1054-660X http://producao.usp.br/handle/BDPI/29773 10.1134/S1054660X08080173 |
Idioma(s) |
eng |
Publicador |
MAIK NAUKA/INTERPERIODICA/SPRINGER |
Relação |
Laser Physics |
Direitos |
restrictedAccess Copyright MAIK NAUKA/INTERPERIODICA/SPRINGER |
Palavras-Chave | #RISE #POLYMERIZATION #HALOGEN #CONVERSION #INTENSITY #INVITRO #DEPTH #LASER #MODEL #Optics #Physics, Applied |
Tipo |
article original article publishedVersion |