983 resultados para D. Electron-phonon interactions
Resumo:
Magneto-transport measurements have been carried out on a Si heavily delta-doped In0.52Al0.48As/In(0.53)G(0.47)As single quantum well in the temperature range between 1.5 and 60 K under magnetic field up to 10 T. We studied the Shubnikov-de Haas(SdH) effect and the Hall effect for the In0.52Al0.48As/In(0.53)G(0.47)As single quantum well occupied by two subbands, and have obtained the electron concentration, mobility, effective mass and energy levels respectively. The electron concentrations of the two subbands derived from mobility spectrum combined with multi-carrier fitting analysis are well consistent with the result from the SdH oscillation. From fast Fourier transform analysis for d(2)rho/dB(2)-1/B, it is observed that there is a frequency of f(1)-f(2) insensitive to the temperature, besides the frequencies f(1), f(2) for the two subbands and the frequency doubling 2f(1), both dependent on the temperature. This is because That the electrons occupying the two different subbands almost have the same effective mass in the quantum well and the magneto-intersubband scattering between the two subbands is strong.
Resumo:
The spin interaction and the effective g factor of a magnetic exciton (ME) are investigated theoretically in a diluted magnetic semiconductor (DMS) quantum dot (QD), including the Coulomb interaction and the sp-d exchange interaction. At low magnetic field, the ME energy decreases rapidly with increasing magnetic field and saturates at high magnetic field for high Mn concentration. The ground state of the ME exhibits an interesting crossing behavior between sigma(+)-ME and sigma(-)-ME for low Mn concentration. The g(ex) factor of the ME in a DMS QD displays a monotonic decrease with increasing magnetic field and can be tuned to zero by an external magnetic field. (C) 2003 American Institute of Physics.
Resumo:
Investigations on photoluminescence properties of (11 (2) over bar0) GaN grown on (1 (1) over bar 02) Al2O3 substrate by metalorganic chemical-vapor deposition are reported. Several emission lines not reported before are observed at low temperature. The sharp peak at 3.359 eV is attributed to the exciton bound to the neutral acceptor. Another peak at 3.310 eV represents a free-to-bound, probably a free electron-to-acceptor, transition. The 3.241 and 3.170 eV lines are interpreted as phonon replica lines of the 3.310 eV line. The phonon energy is 70 meV, consistent with the energy of transverse optical E-1 phonon. The optical properties of the lines are analyzed. (C) 2003 American Institute of Physics.
Resumo:
Linewidth broadening of exciton luminescence in wurtzite and zinc-blende GaN epilayers was investigated as a function of temperature with photoluminescence. A widely accepted theoretical model was used to fit the experimental data, so that the coupling parameters between exciton and acoustic and longitudinal optical phonons were obtained for both structures. It was found that the coupling constants of both exciton-acoustic optical phonon coupling and exciton-longitudinal optical phonon coupling for zinc-blende GaN are almost twice as much as the corresponding values of wurtzite GaN. These results show that the relatively strong exciton-phonon scattering seems to be characteristic to zinc-blende GaN film. (C) 2002 American Institute of Physics.
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.
Resumo:
The polyetherketone (PEK-c) guest-host system thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. Their second-order nonlinear optical (NLO) coefficients chi(33)((2)) were measured by using Maker fringe method for the polymer films doped with different weight percents of DCNP. Experimental results indicate that the second-order NLO properties of the poled polymer films could decrease with the chromophore loading increasing when the chromophore loading reaches a fairly high level. In this paper, the relationship between the macroscopic second-order NLO coefficient and the chromophore number density was modified under considering the role of the electrostatic interactions of chromophores in the polymer film. According to the modified relationship, the macroscopic second-order NLO coefficient is no longer in direct proportion with the chromophore number density in the polymer film. The effect of the electrostatic interactions of chromophores on second-order NLO properties was discussed. The attenuation of the macroscopic second-order NLO activity can be demonstrated by the role of the chromophore electrostatic interactions at high loading of chromophore in the polymer systems.
Resumo:
The traditional monostable-bistable transition logic element (MOBILE) structure is usually composed of resonant tunneling diodes (RTD). This letter describes a new type MOBILE structure consisting of single-electron transistors (i.e. SET-MOBILE). The analytical model of single-electron transistors ( SET) has been considered three states (including an excited state) of the discrete quantum energy levels. The simulation results show negative differential conductance (NDC) characteristics in I-DS-V-DS curve. The SET-MOBILE utilizing NDC characteristics can successfully realize the basic logic functions as the RTD-MOBILE.
Resumo:
The mobility of channel electron, for partially depleted Sol nMOSFET in this paper, decreases with the increase of implanted fluorine dose in buried oxide layer. But, the experimental results also show that it is larger for the transistor corresponding to the lowest implantation dose than no implanted fluorine in buried layer. It is explained in tern-is of a "lubricant" model. Mien fluorine atoms are implanted in the top silicon layer, the mobility is the largest. In addition, a positive shift of threshold voltage has also been observed for the transistors fabricated on the Sol wafers processed by the implantation of fluorine. The causes of all the above results are discussed.
Resumo:
We have studied the single-electron and two-electron vertically-assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six criergy levels of single-electron quantum disks and the two lowest energy levels of two-electron quantum disks in an axial magnetic field. The change of the magnetic field as an effective potential strongly modifies the electronic structures. leading to splittings and crossings between levels The results demonstrate the switching between the around states with the total spins S = 0 and S = 1. The switching results in a qubit allowed to fabricate by current growth techniques.
Resumo:
We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8 x 10(-4). A clear narrow band detection spectrum centered at 4.5 mu m has been observed above room temperature for a device with 200 x 200 mu m(2) square mesa.
Resumo:
Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.
Resumo:
Time-resolved Kerr rotation (TRKR) measurements based on pump-probe arrangement were carried out at 5 K on the monolayer fluctuation induced InAs/GaAs quantum disks grown on GaAs substrate without external magnetic field. The lineshape of TRKR signals shows an unusual dependence on the excitation wavelength, especially antisymmetric step-shaped structures appearing when the excitation wavelength was resonantly scanned over the heavy- and light-hole subbands. Moreover, these step structures possess an almost identical decay time of similar to 40 Ps which is believed to be the characteristic spin dephasing time of electrons in the extremely narrow InAs/GaAs quantum disks.
Resumo:
The electronic structure of a bounded intrinsic stacking fault in silicon is calculated. The method used is an LCAO-scheme (Linear Combinations of Atomic Orbitals) taking ten atomic orbitals of s-, p-, and d-type into account. The levels in the band gap are extracted using Lanczos' algorithm and a continued fraction representation of the local density of states. We find occupied states located up to 0.3 eV above the valence band maximum (E(v)). This significantly differs from the result obtained for the ideal infinite fault for which the interface state is located at E(v)+ 0.1 eV.
Resumo:
Nonresonant electron tunneling between asymmetric double quantum wells in AlxGa1-xAs/GaAs systems has been investigated by using steady-state and time-resolved photoluminescence spectra. Experimental evidence of LO-phonon-assisted tunneling through thick barriers has been obtained by enhancing excitation power densities or applying electric fields perpendicular to the well plane. LO-phonon-assisted tunneling times have also been estimated from the variation of the decay time of the narrow-well photoluminescence with applied electric fields. Our findings suggest that LO phonons in the barriers play an important role in the tunneling transfer.