1000 resultados para Cherry Creek Complex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文对黄芪复合体(Astragalus penduliflorus)复合体进行了物种生物学研究,主要内容包括如下: 1、形态学与物种生物学证据支持目前承认的黄芪复合体5种4变种应分为1种5亚种(其中新亚种一个)。它们是A. penduliflorus subsp. penduliflorus, A. penduliflorus subsp. seiceocanus, A. penduliflorus subsp. mongholicus, A. penduliflorus subsp. qinhaiensis(新亚种)和A. penduliflorus subsp. pallidipurpureus等5个分类实体。 2、讨论了分类群间的形态演化关系。黄芪复合体的进化趋势可能为:A. penduliflorus subsp. pallidipurpurous A. penduliflorus subsp. Qinhaiensis → A. penduliflorus subsp. Mongholius → A. penduliflorus subsp. Sericeocanus → A. penduliflorus subsp. pendulifloras。 3、分析了黄芪复合体3个亚种10个居群的染色体核型,它们的染色体2n=16,各居群间的核型呈现连续的变异式样。 4、分析了黄芪复合体5个亚种13个居群和两个近缘种的种子蛋白,并进行了聚类分析,认为种子蛋白性状在黄芪复合体的居群内比较稳定,且同一居群内的不同个体间无明显差异。同时,种子蛋白分析说明了复合体内居群也呈现连续变异。 5、应用最大同步分支分类法及最小平行进化分支分类法分析了黄芪复合体的谱系分支发生,确认复黄芪复合体为一自然复合种是比较客观的。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMFS bottom trawl survey data were used to describe changes in distribution, abundance, and rates of population change occurring in the Gulf of Maine–Georges Bank herring (Clupea harengus) complex during 1963–98. Herring in the region have fully recovered following severe overfishing during the 1960s and 1970s. Three distinct, but seasonally intermingling components from the Gulf of Maine, Nantucket Shoals (Great South Channel area), and Georges Bank appear to compose the herring resource in the region. Distribution ranges contracted as herring biomass declined in the late 1970s and then the range expanded in the 1990s as herring increased. Analysis of research survey data suggest that herring are currently at high levels of abundance and biomass. All three components of the stock complex, including the Georges Bank component, have recovered to pre-1960s abundance. Survey data support the theory that herring recolonized the Georges Bank region in stages from adjacent components during the late 1980s, most likely from herring spawning in the Gulf of Maine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effluents leaving the Gilt Edge Mining properties in the Black Hills near Deadwood, South Dakota, were collected during April 1940. Field studies of these effluents and of the streams receiving them were made at the time and subsequently laboratory assays and analyses have been completed. ... Data from this particular case of mine waste pollution are presented here.