994 resultados para Auto-image
Resumo:
Liu, Yonghuai, Liu, Honghai, Li, Longzhuang, Wei, Baogang. Accurate Range Image Registration: Eliminating or Modelling Outliers. Proceedings of 12th IEEE Conference on Emerging Technologies and Factory Automation, 2007, pp. 1316-1323. Sponsorship: IEEE
Resumo:
IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 5, pp. 1338-1343, 2003.
Resumo:
C.M. Onyango, J.A. Marchant and R. Zwiggelaar, 'Modelling uncertainty in agricultural image analysis', Computers and Electronics in Agriculture 17 (3), 295-305 (1997)
Resumo:
C.R. Bull, N.J.B. McFarlane, R. Zwiggelaar, C.J. Allen and T.T. Mottram, 'Inspection of teats by colour image analysis for automatic milking systems', Computers and Electronics in Agriculture 15 (1), 15-26 (1996)
Resumo:
Huelse, M, Barr, D R W, Dudek, P: Cellular Automata and non-static image processing for embodied robot systems on a massively parallel processor array. In: Adamatzky, A et al. (eds) AUTOMATA 2008, Theory and Applications of Cellular Automata. Luniver Press, 2008, pp. 504-510. Sponsorship: EPSRC
Resumo:
Kear, A. (2005). The Anxiety of the Image. Parallax, 11 (3), 107-116. RAE2008
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Tese apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Doutor em Ciências Sociais, especialidade em Psicologia
Resumo:
74 hojas : ilustraciones, fotografías.
Resumo:
Poster is based on the following paper: C. Kwan and M. Betke. Camera Canvas: Image editing software for people with disabilities. In Proceedings of the 14th International Conference on Human Computer Interaction (HCI International 2011), Orlando, Florida, July 2011.
Resumo:
A method is proposed that can generate a ranked list of plausible three-dimensional hand configurations that best match an input image. Hand pose estimation is formulated as an image database indexing problem, where the closest matches for an input hand image are retrieved from a large database of synthetic hand images. In contrast to previous approaches, the system can function in the presence of clutter, thanks to two novel clutter-tolerant indexing methods. First, a computationally efficient approximation of the image-to-model chamfer distance is obtained by embedding binary edge images into a high-dimensional Euclide an space. Second, a general-purpose, probabilistic line matching method identifies those line segment correspondences between model and input images that are the least likely to have occurred by chance. The performance of this clutter-tolerant approach is demonstrated in quantitative experiments with hundreds of real hand images.
Resumo:
We introduce "BU-MIA," a Medical Image Analysis system that integrates various advanced chest image analysis methods for detection, estimation, segmentation, and registration. BU-MIA evaluates repeated computed tomography (CT) scans of the same patient to facilitate identification and evaluation of pulmonary nodules for interval growth. It provides a user-friendly graphical user interface with a number of interaction tools for development, evaluation, and validation of chest image analysis methods. The structures that BU-MIA processes include the thorax, lungs, and trachea, pulmonary structures, such as lobes, fissures, nodules, and vessels, and bones, such as sternum, vertebrae, and ribs.
Resumo:
We propose the development of a world wide web image search engine that crawls the web collecting information about the images it finds, computes the appropriate image decompositions and indices, and stores this extracted information for searches based on image content. Indexing and searching images need not require solving the image understanding problem. Instead, the general approach should be to provide an arsenal of image decompositions and discriminants that can be precomputed for images. At search time, users can select a weighted subset of these decompositions to be used for computing image similarity measurements. While this approach avoids the search-time-dependent problem of labeling what is important in images, it still holds several important problems that require further research in the area of query by image content. We briefly explore some of these problems as they pertain to shape.
Resumo:
We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. To gather images expediently, the image collection subsystem utilizes a distributed fleet of WWW robots running on different computers. The image robots gather information about the images they find, computing the appropriate image decompositions and indices, and store this extracted information in vector form for searches based on image content. At search time, users can iteratively guide the search through the selection of relevant examples. Search performance is made efficient through the use of an approximate, optimized k-d tree algorithm. The system employs a novel relevance feedback algorithm that selects the distance metrics appropriate for a particular query.