988 resultados para seismic reflection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O empilhamento por superfície de reflexão comum (ou empilhamento SRC), conhecido como empilhamento CRS, do inglês Commom reflection surface, constitui-se em um novo método para o processamento sísmico na simulação de seções afastamento nulo (AN) e afastamento comum (AC). Este método é baseado em uma aproximação paraxial hiperbólica de segunda ordem dos tempos de trânsito de reflexão na vizinhança de um raio central. Para a simulação de seção AN, o raio central é um raio normal, enquanto que para a simulação de uma seção AC o raio central é um raio de afastamento finito. Em adição à seção AN, o método de empilhamento SRC também fornece estimativas dos atributos cinemáticos do campo de onda, sendo aplicados, por exemplo, na determinação (por um processo de inversão) da velocidade intervalar, no cálculo do espalhamento geométrico, na estimativa da zona de Fresnel, e também na simulação de eventos de tempos de difrações, este último tendo uma grande importância para a migração pré-empilhamento. Neste trabalho é proposta uma nova estratégia para fazer uma migração em profundidade pré-empilhamento, que usa os atributos cinemáticos do campo de onda derivados do empilhamento SRC, conhecido por método CRS-PSDM, do inglês CRS based pre-stack depth migration. O método CRS-PSDM usa os resultados obtidos do método SRC, isto é, as seções dos atributos cinemáticos do campo de onda, para construir uma superfície de tempos de trânsito de empilhamento, ao longo da qual as amplitudes do dado sísmico de múltipla cobertura são somadas, sendo o resultado da soma atribuído a um dado ponto em profundidade, na zona alvo de migração que é definida por uma malha regular. Similarmente ao método convencional de migração tipo Kirchhoff (K-PSDM), o método CRS-PSDM precisa de um modelo de velocidade de migração. Contrário ao método K-PSDM, o método CRS-PSDM necessita apenas computar os tempos de trânsito afastamento nulo, ao seja, ao longo de um único raio ligando o ponto considerado em profundidade a uma dada posição de fonte e receptor coincidentes na superfície. O resultado final deste procedimento é uma imagem sísmica em profundidade dos refletores a partir do dado de múltipla cobertura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os dados sísmicos terrestres são afetados pela existência de irregularidades na superfície de medição, e.g. a topografia. Neste sentido, para obter uma imagem sísmica de alta resolução, faz-se necessário corrigir estas irregularidades usando técnicas de processamento sísmico, e.g. correições estáticas residuais e de campo. O método de empilhamento Superfície de Reflexão Comum, CRS ("Common-Reflection-Surface", em inglês) é uma nova técnica de processamento para simular seções sísmicas com afastamento-nulo, ZO ("Zero-Offset", em inglês) a partir de dados sísmicos de cobertura múltipla. Este método baseia-se na aproximação hiperbólica de tempos de trânsito paraxiais de segunda ordem referido ao raio (central) normal. O operador de empilhamento CRS para uma superfície de medição planar depende de três parâmetros, denominados o ângulo de emergência do raio normal, a curvatura da onda Ponto de Incidência Normal, NIP ("Normal Incidence Point", em inglês) e a curvatura da onda Normal, N. Neste artigo o método de empilhamento CRS ZO 2-D é modificado com a finalidade de considerar uma superfície de medição com topografia suave também dependente desses parâmetros. Com este novo formalismo CRS, obtemos uma seção sísmica ZO de alta resolução, sem aplicar as correições estáticas, onde em cada ponto desta seção são estimados os três parâmetros relevantes do processo de empilhamento CRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O método de empilhamento Superfície de Reflexão Comum (SRC) foi originalmente introduzido como um método data-driven para simular seções afastamento-nulo a partir de dados sísmicos de reflexão pré-empilhados 2-D adquiridos ao longo de uma linha de aquisição reta. Este método está baseado em uma aproximação de tempos de trânsito hiperbólica de segunda ordem parametrizada com três atributos cinemáticos do campo de onda. Em dados terrestres, os efeitos topográficos desempenham um papel importante no processamento e imageamento de dados sísmicos. Assim, esta característica tem sido considerada recentemente pelo método SRC. Neste trabalho apresentamos uma revisão das aproximações de tempos de trânsito SRC que consideram topografia suave e rugosa. Adicionalmente, nós revemos também a aproximação de tempos de trânsito Multifoco para o caso da topografia rugosa. Por meio de um exemplo sintético simples, nós fornecemos finalmente as primeiras comparações entre as diferentes expressões de tempos de trânsito.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A migração com amplitudes verdadeiras de dados de reflexão sísmica, em profundidade ou em tempo, possibilita que seja obtida uma medida dos coeficientes de reflexão dos chamados eventos de reflexão primária. Estes eventos são constituídos, por exemplo, pelas reflexões de ondas longitudinais P-P em refletores de curvaturas arbitrárias e suaves. Um dos métodos mais conhecido é o chamado migração de Kirchhoff, através do qual a imagem sísmica é produzida pela integração do campo de ondas sísmicas, utilizando-se superfícies de difrações, denominadas de Superfícies de Huygens. A fim de se obter uma estimativa dos coeficientes de reflexão durante a migração, isto é a correção do efeito do espalhamento geométrico, utiliza-se uma função peso no operador integral de migração. A obtenção desta função peso é feita pela solução assintótica da integral em pontos estacionários. Tanto no cálculo dos tempos de trânsito como na determinação da função peso, necessita-se do traçamento de raios, o que torna a migração em situações de forte heterogeneidade da propriedade física um processo com alto custo computacional. Neste trabalho é apresentado um algoritmo de migração em profundidade com amplitudes verdadeiras, para o caso em que se tem uma fonte sísmica pontual, sendo o modelo de velocidades em subsuperfície representado por uma função que varia em duas dimensões, e constante na terceira dimensão. Esta situação, conhecida como modelo dois-e-meio dimensional (2,5-D), possui características típicas de muitas situações de interesse na exploração do petróleo, como é o caso da aquisição de dados sísmicos 2-D com receptores ao longo de uma linha sísmica e fonte sísmica 3-D. Em particular, é dada ênfase ao caso em que a velocidade de propagação da onda sísmica varia linearmente com a profundidade. Outro tópico de grande importância abordado nesse trabalho diz respeito ao método de inversão sísmica denominado empilhamento duplo de difrações. Através do quociente de dois empilhamentos com pesos apropriados, pode-se determinar propriedades físicas e parâmetros geométricos relacionados com a trajetória do raio refletido, os quais podem ser utilizados a posteriori no processamento dos dados sísmicos, visando por exemplo, a análise de amplitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extrair informações litológicas da subsuperfície através de dados sísmicos constitui-se num grande desafio à prospecção sísmica, pois a hipótese de estratificações formadas por camadas isotrópicas se mostra insuficiente para representar o comportamento do campo elástico em levantamentos com grandes afastamentos entre fonte e receptor, geofones multicomponentes, medidas de VSP tridimensional, entre outros. Sob este panorama, a prospecção sísmica passa a considerar modelos anisotrópicos de subsuperfície para, por exemplo, caracterizar reservatórios. O objetivo deste texto é apresentar um formalismo para modelar o espalhamento de pulsos a partir de ondas planas incidentes em interfaces planas horizontais que separam meios anisotrópicos. Este espalhamento é obtido primeiramente, através da formulação explícita dos campos de deformação e tração como função das matrizes propagadoras, de polarização e de impedância do meio. Em seguidaeste formalismo é usado para a obtenção das matrizes dos coeficientes de reflexão e transmissão através de uma interface plana horizontal para posteriormente, ser generalizado para o espalhamento através de múltiplas camadas. Finalmente, inserem-se ao campo da onda incidente as amplitudes de um pulso analítico para calcular o espalhamento do pulso através de estratificações.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nas bacias sedimentares da região Amazônica, a geração e o acúmulo de hidrocarboneto estão relacionados com a presença das soleiras de diabásio. Estas rochas magmáticas intrusivas possuem grandes contrastes de impedância com as rochas sedimentares encaixantes, resultando em múltiplas externas e internas, com amplitudes semelhantes às das reflexões sísmicas primárias. Estas múltiplas podem predominar sobre as informações oriundas de interfaces mais profundas, dificultando o processamento, a interpretação e o imageamento da seção de sísmica. O objetivo da presente tese é realizar a atenuação de múltiplas em seções sintéticas fontecomum (CS), através da combinação dos métodos Wiener-Hopf-Levinson de predição (WHLP) e o do empilhamento superfície-de-reflexão-comum (CRS), aqui denominando pela sigla WHLPCRS. O operador de deconvolução é calculado com as amplitudes reais do sinal sísmico e traço-a-traço, o que consideramos como uma melhor eficiência para a operação de atenuação. A identificação das múltiplas é feita na seção de afastamento-nulo (AN) simulada com o empilhamento CRS, utilizando o critério da periodicidade entre primária e suas múltiplas. Os atributos da frente de onda, obtidos através do empilhamento CRS, são utilizados na definição de janelas móveis no domínio tempo-espaço, e usados para calcular o operador WHLP-CRS. No desenvolvimento do presente trabalho, visamos evitar a inconveniência da seção processada ZO; desenhar e aplicar operadores na configuração CS; e estender o método WHL para camadas curvas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho foi desenvolvido um método de solução ao problema inverso para modelos sísmicos compostos por camadas homogêneas e isotrópicas separadas por superfícies suaves, que determina as velocidades intervalares em profundidade e calcula a geometria das interfaces. O tempo de trânsito é expresso como uma função de parâmetros referidos a um sistema de coordenadas fixo no raio central, que é determinada numericamente na superfície superior do modelo. Essa função é posteriormente calculada na interface anterior que limita a camada não conhecida, através de um processo que determina a função característica em profundidade. A partir da função avaliada na interface anterior se calculam sua velocidade intervalar e a geometria da superfície posterior onde tem lugar a reflexão do raio. O procedimento se repete de uma forma recursiva nas camadas mais profundas obtendo assim a solução completa do modelo, não precisando em nenhum passo informação diferente à das camadas superiores. O método foi expresso num algoritmo e se desenvolveram programas de computador, os quais foram testados com dados sintéticos de modelos que representam feições estruturais comuns nas seções geológicas, fornecendo as velocidades em profundidade e permitindo a reconstrução das interfaces. Uma análise de sensibilidade sobre os programas mostrou que a determinação da função característica e a estimação das velocidades intervalares e geometria das interfaces são feitos por métodos considerados estáveis. O intervalo empírico de aplicabilidade das correções dinâmicas hiperbólicas foi tomado como uma estimativa da ordem de magnitude do intervalo válido para a aplicação do método.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A análise de AVO constitui-se, atualmente, numa importante ferramenta para a extração de informações litológicas a partir de dados sísmicos, através do uso dos contrastes de impedância acústica nas interfaces que separam diferentes litologias. A hipótese usual de isotropia deixa de valer, em muitos casos, após o advento de arranjos de grande afastamento e geofones com multi-superfície. Para a interpretação destes dados, a análise de AVO deve incluir anisotropia. Este trabalho apresenta uma teoria de AVO e resultados numéricos para um meio anisotrópico estratificado. Esta tese contém três contribuições. Inicialmente, é apresentada uma nova abordagem para o estudo da reflexão-transmissão através de interface plana que separam dois meios anisotrópicos com pelo menos um plano horizontal de simetria especular. As equações de Zoeppritz são generalizadas para incluir anisotropia, através da introdução das chamadas matrizes de impedância, o que simplifica bastante o formalismo anterior. Posteriormente, é descrito o estudo da reflexão de ondas P através de interface entre um meio isotrópico e outro transversalmente isotrópico (TI). É mostrado que a reflexão de ondas P, neste tipo de experimento, não fornece informações sobre a presença de anisotropia do semi-espaço TI, pelo menos em incidência pré-crítica. Finalmente, é discutido o comportamento da reflexão e transmissão de pulsos, em incidência pós-crítica, através de meios anisotrópicos estratificados. Observa-se que o comportamento pós-crítico dos pulsos espalhados carregam valiosa informações sobre a anisotropia dos meios atravessados por eles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é apresentada uma nova técnica para a realização do empilhamento sísmico, aplicada ao problema do imageamento de refletores fixos em um meio bidimensional, suavemente heterogêneo, isotrópico, a partir de dados de reflexão. Esta nova técnica chamada de imageamento homeomórfico tem como base a aproximação geométrica do raio e propriedades topológicas dos refletores. São utilizados, portanto, os conceitos de frente de onda, ângulo de incidência, raio de curvatura da frente de onda, cáustica e definição da trajetória do raio; de tal modo que a imagem obtida mantém relações de homeomorfismo com o objeto que se deseja imagear. O empilhamento sísmico é feito, nesta nova técnica de imageamento, aplicando-se uma correção local do tempo, ∆ t, ao tempo de trânsito, t, do raio que parte da fonte sísmica localizada em xo, reflete-se em um ponto de reflexão, Co, sendo registrado como uma reflexão primária em um geofone localizado em xg, em relação ao tempo de referência to no sismograma, correspondente ao tempo de trânsito de um raio central. A fórmula utilizada nesta correção temporal tem como parâmetros o raio de curvatura Ro, o ângulo de emergência βo da frente de onda, no instante em que a mesma atinge a superfície de observação, e a velocidade vo considerada constante nas proximidades da linha sísmica. Considerando-se uma aproximação geométrica seguido um círculo para a frente de onda, pode-se estabelecer diferentes métodos de imageamento homeomórfico dependendo da configuração de processamento. Sendo assim tem-se: 1) Método Elemento de Fonte (Receptor) Comum (EF(R)C). Utiliza-se uma configuração onde se tem um conjunto de sismogramas relacionado com uma única fonte (receptor), e considera-se uma frente de onda real (de reflexão); 2) Método Elemento de Reflexão Comum (ERC). Utiliza-se uma configuração onde um conjunto de sismogramas é relacionado com um único ponto de reflexão, e considera-se uma frente de onda hipoteticamente originada neste ponto; 3) Método Elemento de Evoluta Comum (EEC). Utiliza-se uma configuração onde cada sismograma está relacionado com um par de fonte e geofone coincidentemente posicionados na linha sísmica, e considera-se uma frente de onda hipoteticamente originada no centro de curvatura do refletor. Em cada um desses métodos tem-se como resultados uma seção sísmica empilhada, u(xo, to); e outras duas seções denominadas de radiusgrama, Ro (xo, to), e angulograma, βo(xo, to), onde estão os valores de raios de curvatura e ângulos de emergência da frente de onda considerada no instante em que a mesma atinge a superfície de observação, respectivamente. No caso do método denominado elemento refletor comum (ERC), a seção sísmica resultante do empilhamento corresponde a seção afastamento nulo. Pode-se mostrar que o sinal sísmico não sofre efeitos de alongamento como consequência da correção temporal, nem tão pouco apresenta problemas de dispersão de pontos de reflexão como consequência da inclinação do refletor, ao contrário do que acontece com as técnicas de empilhamento que tem por base a correção NMO. Além disto, por não necessitar de um macro modelo de velocidades a técnica de imageamento homeomórfico, de um modo geral, pode também ser aplicada a modelos heterogêneos, sem perder o rigor em sua formulação. Aqui também são apresentados exemplos de aplicação dos métodos elemento de fonte comum (EFC) (KEYDAR, 1993), e elemento refletor comum (ERC) (STEENTOFT, 1993), ambos os casos com dados sintéticos. No primeiro caso, (EFC), onde o empilhamento é feito tendo como referência um raio central arbitrário, pode-se observar um alto nível de exatidão no imageamento obtido, além do que é dada uma interpretação para as seções de radiusgrama e angulograma, de modo a se caracterizar aspectos geométricos do model geofísico em questão. No segundo caso, (ERC), o método é aplicado a série de dados Marmousi, gerados pelo método das diferenças finitas, e o resultado é comparado com aquele obtido por métodos convecionais (NMO/DMO) aplicados aos mesmos dados. Como consequência, observa-se que através do método ERC pode-se melhor detectar a continuidade de refletores, enquanto que através dos métodos convencionais caracterizam-se melhor a ocorrência de difrações. Por sua vez, as seções de radiusgrama e angulograma, no método (ERC), apresentam um baixo poder de resolução nas regiões do modelo onde se tem um alto grau de complexidade das estruturas. Finalmente, apresenta-se uma formulação unificada que abrange os diferentes métodos de imageamento homeomórfico citados anteriormente, e também situações mais gerais onde a frente de onda não se aproxima a um círculo, mas a uma curva quadrática qualquer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa na solução de problemas de modelagem e imageamento sísmicos. Nesta Tese, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB). As principais características que diferenciam a migração KGB, durante a realização do primeiro empilhamento, de outros métodos de migração que também utilizam a teoria dos Feixes Gaussianos, são o uso da primeira zona de Fresnel projetada para limitar a largura do feixe e a utilização, no empilhamento do feixe, de uma aproximação de segunda ordem do tempo de trânsito de reflexão. Como exemplos são apresentadas aplicações a dados sintéticos para modelos bidimensionais (2-D) e tridimensionais (3-D), correspondentes aos modelos Marmousi e domo de sal da SEG/EAGE, respectivamente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A teoria dos feixes gaussianos foi introduzida na literatura sísmica no início dos anos 80 por pesquisadores russos e tchecos, e foi originalmente utilizada no cálculo do campo de ondas eletromagnéticas, baseado na teoria escalar da difração. Na teoria dos feixes gaussianos, o campo de ondas sísmicas é obtido por uma integral, cujo o integrando é constituído de duas partes, a saber: (1) as amplitudes dos campos das ondas na vizinhança do ponto de observação e (2) a função fase de cada um desses campos de ondas, que neste caso é representada por um tempo de trânsito paraxial complexo. Como ferramenta de imageamento, mais precisamente como operador de migração, os primeiros trabalhos usando feixes gaussianos datam do final da década de 80 e início dos anos 90. A regularidade dos campos de ondas descritos pelos feixes gaussianos, além de sua alta precisão em regiões singulares do modelo de velocidades, tornaram o uso de feixes gaussianos como uma alternativa híbrida viável para a migração. Nesse trabalho, unimos a flexibilidade da migração tipo Kirchhoff em profundidade em verdadeira amplitude com a regularidade da descrição do campo de ondas, representado pela sobreposição de feixes gaussianos. Como forma de controlar de forma estável quantidades usadas na construção de feixes gaussianos, utilizamos informações advindas do volume de Fresnel, mais precisamente a zona de Fresnel ao redor do ponto de reflexão e a zona de Fresnel projetada, localizada ao redor do ponto de registro do sismograma e cuja a informação se encontra nas curvas de reflexão de dados sísmico. Nosso processo de migração pode ser chamado como uma migração Kirchhoff em verdadeira amplitude usando um operador de feixes gaussianos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um registro sísmico é frequentemente representado como a convolução de um pulso-fonte com a resposta do meio ao impulso, relacionada ao caminho da propagação. O processo de separação destes dois componentes da convolução é denominado deconvolução. Existe uma variedade de aproximações para o desenvolvimento de uma deconvolução. Uma das mais comuns é o uso da filtragem linear inversa, ou seja, o processamento do sinal composto, através de um filtro linear, cuja resposta de frequência é a recíproca da transformada de Fourier de um dos componentes do sinal. Obviamente, a fim de usarmos a filtragem inversa, tais componentes devem ser conhecidas ou estimadas. Neste trabalho, tratamos da aplicação a sinais sísmicos, de uma técnica de deconvolução não linear, proposta por Oppenheim (1965), a qual utiliza a teoria de uma classe de sistemas não lineares, que satisfazem um princípio generalizado de superposição, denominados de sistemas homomórficos. Tais sistemas são particularmente úteis na separação de sinais que estão combinados através da operação de convolução. O algoritmo da deconvolução homomórfica transforma o processo de convolução em uma superposição aditiva de seus componentes, com o resultado de que partes simples podem ser separadas mais facilmente. Esta classe de técnicas de filtragem representa uma generalização dos problemas de filtragem linear. O presente método oferece a considerável vantagem de que não é necessário fazer qualquer suposição prévia sobre a natureza do pulso sísmico fonte, ou da resposta do meio ao impulso, não requerendo assim, as considerações usuais de que o pulso seja de fase-mínima e que a distribuição dos impulsos seja aleatória, embora a qualidade dos resultados obtidos pela análise homomórfica seja muito sensível à razão sinal/ruído, como demonstrado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação consta de estudos sobre deconvolução sísmica, onde buscamos otimizar desempenhos na operação de suavização, na resolução da estimativa da distribuição dos coeficientes de reflexão e na recuperação do pulso-fonte. Os filtros estudados são monocanais, e as formulações consideram o sismograma como o resultado de um processo estocástico estacionário, e onde demonstramos os efeitos de janelas e de descoloração. O principio aplicado é o da minimização da variância dos desvios entre o valor obtido e o desejado, resultando no sistema de equações normais Wiener-Hopf cuja solução é o vetor dos coeficientes do filtro para ser aplicado numa convolução. O filtro de deconvolução ao impulso é desenhado considerando a distribuição dos coeficientes de reflexão como uma série branca. O operador comprime bem os eventos sísmicos a impulsos, e o seu inverso é uma boa aproximação do pulso-fonte. O janelamento e a descoloração melhoram o resultado deste filtro. O filtro de deconvolução aos impulsos é desenhado utilizando a distribuição dos coeficientes de reflexão. As propriedades estatísticas da distribuição dos coeficientes de reflexão tem efeito no operador e em seu desempenho. Janela na autocorrelação degrada a saída, e a melhora é obtida quando ela é aplicada no operador deconvolucional. A transformada de Hilbert não segue o princípio dos mínimos-quadrados, e produz bons resultados na recuperação do pulso-fonte sob a premissa de fase-mínima. O inverso do pulso-fonte recuperado comprime bem os eventos sísmicos a impulsos. Quando o traço contém ruído aditivo, os resultados obtidos com auxilio da transformada de Hilbert são melhores do que os obtidos com o filtro de deconvolução ao impulso. O filtro de suavização suprime ruído presente no traço sísmico em função da magnitude do parâmetro de descoloração utilizado. A utilização dos traços suavizados melhora o desempenho da deconvolução ao impulso. A descoloração dupla gera melhores resultados do que a descoloração simples. O filtro casado é obtido através da maximização de uma função sinal/ruído. Os resultados obtidos na estimativa da distribuição dos coeficientes de reflexão com o filtro casado possuem melhor resolução do que o filtro de suavização.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A motivação geológica deste trabalho reside no imageamento de estruturas de bacias sedimentares da região Amazônica, onde a geração e o acúmulo de hidrocarboneto estão relacionados com a presença de soleiras de diabásio. A motivação sísmica reside no fato de que essas rochas intrusivas possuem grandes contrastes de impedância com a rocha encaixante, o que resulta em múltiplas, externas e internas, com amplitudes semelhantes as das primárias. O sinal sísmico das múltiplas podem predominar sobre o sinal das reflexões primárias oriundas de interfaces mais profundas, o que pode dificultar o processamento, a interpretação e o imageamento da seção sísmica temporal. Neste trabalho, estudamos a atenuação de múltiplas em seções sintéticas fonte-comum (FC) através da comparação de dois métodos. O primeiro método resulta da combinação das técnicas Wiener-Hopf-Levinson de predição (WHLP) e o de empilhamento superfície-de-reflexão-comum (CRS), e denominando WHLP-CRS, onde o operador é desenhado exclusivamente no domínio do tempo-espaço. O segundo método utilizado é o filtro de velocidade (ω-k) aplicado após o empilhamento superfície-de-reflexão (CRS), onde o operador é desenhado exclusivamente no domínio bidimensional de freqüência temporal-espacial. A identificação das múltiplas é feita na seção de afastamento-nulo (AN) simulada com o empilhamento CRS, e utiliza o critério da periodicidade entre primária e suas múltiplas. Os atributos da frente de onda, obtidos através do empilhamento CRS, são utilizados na definição de janelas móveis no domínio tempo-espaço, que são usadas para calcular o operador WHLP-CRS. O cálculo do filtroω-k é realizado no domínio da freqüência temporal-espacial, onde os eventos são selecionados para corte ou passagem. O filtro (ω-k) é classificado como filtro de corte, com alteração de amplitude, mas não de fase, e limites práticos são impostos pela amostragem tempo-espaço. Em termos práticos, concluímos que, para o caso de múltiplas, os eventos separados no domínio x-t não necessariamente se separam no domínio ω-k, o que dificulta o desenho de um operador ω-k semelhante em performance ao operador x-t.