995 resultados para amorphous thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new regime of plasma-enhanced chemical-vapor deposition (PECVD), referred to as "uninterrupted growth/annealing" method, has been proposed for preparation of high-quality hydrogenated amorphous silicon (a-Si:H) films. By using this regime, the deposition process no longer needs to be interrupted, as done in the chemical annealing or layer by layer deposition, while the growing surface is continuously subjected to an enhanced annealing treatment with atomic hydrogen created in the hydrogen-diluted reactant gas mixture at a relatively high plasma power. The intensity of the hydrogen plasma treatment is controlled at such a level that the deposition conditions of the resultant films approach the threshold for microcrystal formation. In addition, a low level of B-compensation is used to adjust the position of the Fermi level close to the midgap. Under these conditions, we find that the stability and optoelectronic properties of a-Si:H films have been significantly improved. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simple reflection technique is usually used to measure the linear electro-optic (EO) coefficient (Pockels coefficient) in the development of EO polymer thin films. But there are some problems in some articles in the determination of the phase shift between the s and p light modes of a laser beam waveguided into the polymer film while a modulating voltage is applied across the electrodes, and different expressions for the linear EO coefficient measured have been given in these articles. In our research, more accurate expression of the linear EO coefficient was deduced by suitable considering the phase shift between the s and p light modes. The linear EO coefficients of several polymer thin films were measured by reflection technique, and the results of the Linear EO coefficient calculated by different expressions were compared. The limit of the simple reflection technique for measuring the linear EO coefficient of the polymer thin films was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E-2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Ge embedded in SiOx matrix is fabricated by oxidizing hydrogenated amorphous Sice alloys or hydrogenated amorphous Si/hydrogenated amorphous Ge multilayers. The structures before and after oxidation are systematically investigated. Visible light emission was observed from both samples. The luminescence peak is located at 2.2 eV which is independent of the starting materials. Compared to the luminescence from unlayered samples, the photoluminescence spectrum from multilayered samples has a narrower band width, which can be attributed to the uniform size distribution. The light emission origin is also discussed briefly and a mechanism different from the quantum size effect is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved pulsed rapid thermal annealing method has been used to crystallize amorphous silicon films prepared by PECVD. The solid-phase crystallization and dopant activation process can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/l-s 850 degrees C thermal pulse. A mean grain size more than 1000 Angstrom and a Hall mobility of 24.9 cm(2)/V s are obtained in the crystallized films. The results indicate that this annealing method possesses the potential for fabricating large-area and good-quality polycrystalline silicon films on low-cost glass substrate. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure, hydrogen bonding configurations and hydrogen content of high quality and stable hydrogenated amorphous silicon (a-Si:H) films prepared by a simple ''uninterrupted growth/annealing" plasma enhanced chemical vapor deposition technique have been investigated by Raman scattering and infrared absorption spectroscopy. The high stability a-Si:H films contain small amounts of a microcrystalline phase and not less hydrogen (10-16 at. %), particularly, the clustered phase hydrogen, Besides, the hydrogen distribution is very inhomogeneous. Some of these results are substantially distinct from those of conventional device-quality n-Si:H film or stable cr-Si:H films prepared by the other techniques examined to date. The stability of n-Si:H films appears to have no direct correlation with the hydrogen content or the clustered phase hydrogen concentration. The ideal n-Si:H network with high stability and low defect density is perhaps not homogeneous. (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality InAs epitaxial layers have been grown on (1 0 0) oriented semi-insulating GaAs substrates by MBE. The transport properties of largely lattice mismatched InAs/GaAs heterojunctions have been investigated by Hall effect measurements down to 10 K. In spite of a high dislocation density at the heterointerface, very high electron mobilities are obtained in the InAs thin films. By doping Si into the layer far from the InAs/GaAs interface, we found that the doped samples have higher electron mobility than that of the undoped samples with the same thickness. The mobility demonstrates a pronounced minimum around 300 K for the undoped sample. But for Si-doped samples, no pronounced minimum has been found. Such abnormal behaviours are explained by the parallel conduction from the quasi-bulk carriers and interface carriers. These high-mobility InAs thin films are found to be suitable materials for making Hall elements. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel process of room temperature ion beam sputtering deposition of vanadium oxide films and low temperature post annealing for uncooled infrared detectors was proposed in this work. VOx thin films with relatively low square resistance (70 K Omega / square) and large temperature coefficient of resistance (more than 3%/K) at room temperature were fabricated using this low temperature process which was very compatible with the process of uncooled infrared detectors based on micromachined technology. Furthermore, chemical composition and film surface have been characterized using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results showed that the main composition of the processed thin films was V2O5 and the thin films were in the process of crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulge test combined with a refined load-deflection model for long rectangular membrane was applied to determine the mechanical and fracture properties of PECVD silicon nitride (SiNx) thin films. Plane-strain modulus E-ps prestress s(0), and fracture strength s(max) of SiNx thin films deposited both on bare Si substrate and on SiO2-topped Si substrate were extracted. The SiNx thin films on different substrates possess similar values of E-ps and s(0) but quite different values of s(max). The statistical analysis of fracture strengths were performed by Weibull distribution function and the fracture origins were further predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates were characterized using bulge testing combined with a refined load-deflection model for long rectangular membranes. Plane-strain modulus E-ps, prestress so, and fracture strength s(max) for 3C-SiC thin films with thickness of 0.40 mu m and 1.42 mu m were extracted. The E, values of SiC are strongly dependent on grain orientation. The thicker SIC film presents lower so than the thinner film due to stress relaxation. The s(max) values decrease with increasing film thickness. The statistical analysis of the fracture strength data were achieved by Weibull distribution function and the fracture origins were predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between the energy band-gap of AlxGa1-xN epitaxial thin films and lattice strain was investigated using both High Resolution X-ray Diffraction (HRXRD) and Spectroscopic Ellipsometry (SE). The Al fraction, lattice relaxation, and elastic lattice strain were determined for all AlxGa1-xN epilayers, and the energy gap as well. Given the type of intermediate layer, a correlation trend was found between energy band-gap bowing parameter and lattice mismatch, the higher the lattice mismatch is, the smaller the bowing parameter (b) will be.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By realizing in thin films a tensile stress state, superconductivity of 13 K was introduced into FeTe, a nonsuperconducting parent compound of the iron pnictides and chalcogenides, with a transition temperature higher than that of its superconducting isostructural counterpart FeSe. For these tensile stressed films, superconductivity is accompanied by a softening of the first-order magnetic and structural phase transition, and also, the in-plane extension and out-of-plane contraction are universal in all FeTe films independent of the sign of the lattice mismatch, either positive or negative. Moreover, the correlations were found to exist between the transition temperatures and the tetrahedra bond angles in these thin films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-vanadium dioxide thin films were prepared through thermal annealing vanadium oxide thin films deposited by dual ion beam sputtering. The nano-vanadium dioxide thin films changed its state from semiconductor phase to metal phase through heating by homemade system. Four point probe method and Fourier transform infrared spectrum technology were employed to measure and anaylze the electrical and optical semiconductor-to-metal phase transition properties of nano-vanadium dioxide thin films, respectively. The results show that there is an obvious discrepancy between the semiconductor-to-metal phase transition properties of electrical and optical phase transition. The nano-vanadium dioxide thin films' phase transiton temperature defined by electrical phase transiton property is 63 degrees C, higher than that defined by optical phase transiton property at 5 mu m, 60 degrees C; and the temperature width of electrical phase transition duration is also wider than that of optical phase transiton duration. The semiconductor-to-metal phase transiton temperature defined by optical properties increases with increasing wavelength in the region of infrared wave band, and the occuring temperature of phase transiton from semiconductor to metal also increases with wavelength increasing, but the duration temperature width of transition decreases with wavelength increasing. The phase transition properties of nano-vanadium dioxide thin film has obvious relationship with wavelength in infrared wave band. The phase transition properties can be tuned through wavelength in infrared wave band, and the semiconductor-to-metal phase transition properties of nano vanadiium dioxide thin films can be better characterized by electrical property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.