988 resultados para Single-electron devices


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-hot-boat chemical vapor deposition system was modified from a thermal evaporation equipment. This system has the advantage of high vacuum, rapid heating rate and temperature separately controlled boats for the source and samples. These are in favor of synthesizing compound semiconducting nano-materials. By the system, we have synthesized high-quality wurtzite single crystal GaN nanowires and nanotip triangle pyramids via an in-situ doping indium surfactant technique on Si and 3C-SiC epilayer/Si substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, highresolution transmission electron microscopy, energy- dispersive x-ray spectroscopy, and photoluminescence measurements. The GaN nanotip triangle pyramids, synthesized with this novel method, have potential application in electronic/ photonic devices for field-emission and laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmission of electrons through a hierarchical self-assembly of GaAs/AlxGa(1-)xAs quantum dots (QDs) is calculated using the coupled-channel recursion method. Our results reveal that the number of conductance peaks does not change when the barrier widths change, but the intensities decrease as the barrier widths increase. The conductance peaks will shift towards low Fermi energies as the transverse width of GaAs QD increases, as the thickness of GaAs quantum well increases, or as the height of GaAs QDs decreases. Our calculated results may be useful in the application of QDs to photoelectric devices. (c) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SOI (silicon-on-insulator) is a new material with a lot of important performances such as large index difference, low transmission loss. Fabrication processes for SOI based optoelectronic devices are compatible with conventional IC processes. Having the potential of OEIC monolithic integration, SOI based optoelectronic devices have shown many good characteristics and become more and more attractive recently. In this paper, the recent progresses of SOI waveguide devices in our research group are presented. By highly effective numerical simulation, the single mode conditions for SOI rib waveguides with rectangular and trapezoidal cross-section were accurately investigated. Using both chemical anisotropic wet etching and plasma dry etching techniques, SOI single mode rib waveguide, MMI coupler, VOA (variable optical attenuator), 2X2 thermal-optical switch were successfully designed and fabricated. Based on these, 4X4 and 8X8 SOI optical waveguide integrated switch matrixes are demonstrated for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The novel Si stripixel detector, developed at BNL (Brookhaven National Laboratory), has been applied in the development of a prototype Si strip detector system for the PHENIX Upgrade at RHIC. The Si stripixel detector can generate X-Y two-dimensional (2D) position sensitivity with single-sided processing and readout. Test stripixel detectors with pitches of 85 and 560 mu m have been subjected to the electron beam test in a SEM set-up, and to the laser beam test in a lab test fixture with an X-Y-Z table for laser scanning. Test results have shown that the X and Y strips are well isolated from each other, and 2D position sensitivity has been well demonstrated in the novel stripixel detectors. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaN nanotip triangle pyramids were synthesized on 3C-SiC epilayer via an isoelectronic In-doping technique. The synthesis was carried out in a specially designed two-hot-boat chemical vapor deposition system. In (99.999%) and molten Ga (99.99%) with a mass ratio of about 1:4 were used as the source, and pieces of Si (111) wafer covered with 400-500 nm 3C-SiC epilayer were used as the substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, and photoluminescence measurements. Our results show that the as-synthesized GaN pyramids are perfect single crystal with wurtzite structure, which may have potential applications in electronic/photonic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin A1N film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetotransport properties of In-0.53 GaAs/In-0.52 AlAs high electron mobility transistor (HEMT) structures with different channel thickness of 10-35 nm have been investigated in magnetic fields up to 13 T at 1.4 K. Fast Fourier transform has been employed to obtain the subband density and mobility of the two-dimensional electron gas in these HEMT structures. We found that the thickness of channel does not significantly enhance the electron density of the two-dimensional electron gas, however, it has strong effect on the proportion of electrons inhabited in different subbands. When the size of channel is 20 nm, the number of electrons occupying the excited subband, which have higher mobility, reaches the maximum. The experimental values obtained in this work are useful for the design and optimization of InGaAs/InAlAs HEMT devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO nanocrystals were synthesized by hydrolysis in methanol. X-ray diffraction and photoluminescence spectra confirm that good crystallized ZnO nanoparticles were formed. Utilizing those ZnO nanoparticles and poly [2- methoxy-5 - (3',7'-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV), light emitting devices with indium tin oxide (ITO)/poly(3,4-oxyethyleneoxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS)/ ZnO:MDMO-PPV/Al and ITO/PEDOT:PSS/MDMO-PPV/Al structures were fabricated. Electrolummescence (EL) spectra reveal that EL yield of hybrid MDMO-PPV and ZnO nanocrystals devices increased greatly as compared with pristine MDMO-PPV devices. The current-voltage characteristics indicate that addition of ZnO nanocrystals can facilitate electrical injection and charge transport. The decreased energy barrier to electron injection is responsible for the increased efficiency of electron injection. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic light emitting diodes using a mixed layer of electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride and electron donor copper phthalocyanine (PTCDA:CuPc) on indium tin oxide (ITO) anodes were fabricated. The device properties were found to be strongly dependent on the thickness of the PTCDA:CuPc film: both the power efficiency and the driving voltage of the device were optimized with a thickness of PTCDA:CuPc ranging from 10 to 20 nm. As compared to the conventional ITO/CuPc hole injection structure, the ITO/PTCDA:CuPc hole injection structure could remarkably enhance both the luminance and the power efficiencies of devices. A mechanism of static-induced, very efficient hole-electron pairs generation in mixed PTCDA:CuPc films was proposed to explain the experimental phenomena. The structural and optical properties of PTCDA:CuPc film were examined as well. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on a Si delta-doped In0.65Ga0.35As/In0.52Al0.48As metamorphic high-electron-mobility transistor with InP substrate in a temperature range between 1.5 and 60 K under magnetic field up to 13 T. We studied the Shubnikov-de Haas (SdH) effect and the Hall effect for the In0.65Ga0.35As/In0.52Al0.48As single quantum well occupied by two subbands and obtained the electron concentration and energy levels respectively. We solve the Schrodinger-Kohn-Sham equation in conjunction with the Poisson equation self-consistently and obtain the configuration of conduction band, the distribution of carriers concentration, the energy level of every subband and the Fermi energy. The calculational results are well consistent with the results of experiments. Both experimental and calculational results indicate that almost all of the delta-doped electrons transfer into the quantum well in the temperature range between 1.5 and 60 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3', 7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) bulk heterojuriction photovoltaic cells. Photolummescence quenching experimental results indicate that the ultra,fast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity about 1.2 eV greater than that of MDMO-PPV. Electron 'back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electroluminescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-walled carbon nanotube (SWNT) rings with a diameter of about 100 nm have been prepared by thermally decomposing hydrocarbon in a floating catalyst system. These rings appeared to consist mostly of SWNT toroids. High resolution transmission electron microscopy showed that these rings were composed of tens of SWNTs with a tightly packed arrangement. The production of SWNT rings was improved through optimizing various growth parameters, such as growth temperature, sublimation temperature of the catalyst, different gas flows and different catalyst components. The growth mechanism of the SWNT rings is discussed. In the field emission measurements we found that field emission from a halved ring is better than that from a whole SWNT ring, which contributed to the better emission from two opened ends of the nanotubes of the halved SWNT ring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports that lnAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm(2) has been obtained for diodes with AlAs barriers of ten monolayers, and an In0.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.