832 resultados para SWNT-PEG 


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi si pone l’obiettivo di individuare il corretto veicolo “carrier” per un cemento bioceramico premiscelato, iniettabile e pronto all’uso. Il suddetto cemento è creato per applicazioni di chiusura e otturazioni permanenti del canale radicolare. A tale scopo è stato analizzato anatomicamente il dente e sono state approfondite le patologie. In seguito si è posta particolare attenzione per l’endodonzia e la terapia endodontica ortograda. L’attenzione si è poi focalizzata sui cementi endodontici allo scopo di ricercare lo stato dell’arte circa le proprietà chimico-fisiche di cementi ampiamente utilizzati in odontoiatria quali il mineral trioxide aggregate (MTA) e il cemento da cui è derivato ossia il cemento Portland. La parte sperimentale dell’elaborato parte con l’idea di ricreare, presso il Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali del Dipartimento di Scienze della Terra e Geologico-Ambientali dell’Università di Bologna, un prodotto con le stesse caratteristiche di un cemento ad uso endodontico iniettabile attualmente in commercio. Si è quindi studiato non solo il comportamento ma si sono anche analizzate le caratteristiche superficiali al SEM del suddetto cemento additivato con differenti sostanze (acqua, PEG 400, etil-lattato, glicerina) in diverse quantità. Si è passati di poi a testare il campione dalle caratteristiche più vicine all’obiettivo su disco di dentina con il permeabilimetro di Pashley e successivamente, si sono osservati dischi di dentina dopo l’applicazione del cemento e dopo attacco acido al SEM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La présente recherche couvre les premiers essais d’une nouvelle méthode de fonctionnalisation chimique de surfaces hydroxylées. La méthode consiste à faire réagir ladite surface avec un réactif en excès, le tétrachlorure de silicium (SiCl4), rendant celle-ci chimiquement réactive à n’importe quel alcool externe ajouté par la suite au milieu. L’alcool externe modifie les propriétés de surface du substrat dépendamment de sa composition. Une multitude de fonctionnalités chimiques peuvent être présentes sur l’alcool externe et ce sont elles qui dictent les nouvelles propriétés de surface. Dans l’étude présente, les substrats étudiés ont été la cellulose microcristalline commerciale (MCC), la fibre de chanvre délignifiée et la corde de lin. La MCC est une cellulose fortement hydrolysée et purifiée ayant une structure cristalline la rendant insoluble. L’absence d’impuretés pouvant engendrer des interférences est la raison majeure pour laquelle ce substrat a été employé en premier. Avec des alcools tels que le 1-décanol, le 10-undécènol et le PEG-400, les propriétés de surfaces ont été ajustées et ont permis les premières applications comme substrat fibreux dans des composites de LDPE et de PLA. Une fois modifiés avec le 1-décanol et le 10-undécènol, les substrats ont montré des propriétés surfaciques hydrophobes n’absorbant plus l’eau et montrant des angles de contacts supérieurs à 90o avec celle-ci. Des mélanges à 17 et à 50 % massiques de ces substrats modifiés ont donc été faits avec le LDPE et une caractérisation complète des composites a été effectuée. Les tests mécaniques des composites modifiés de 17 % massique de MCC et de corde ont démontré une claire adhésion substrat-matrice par l’augmentation de la contrainte maximale ainsi que de l’élongation à la rupture. Pour ce qui est des substrats avec PEG-400, la fonctionnalisation a été démontrée et des composites MCC-PLA ont été faits. La modification de la MCC a engendré un changement des propriétés mécaniques sans toutefois surpasser le PLA de départ. Néanmoins, dans tous les cas, l’adhésion substrat-matrice a été améliorée par la réaction et a pu être démontrée par l’étude des fractures et des coupes microtomes au MEB. Finalement, la dispersion et les interactions à l’intérieur des composites de MCC à 17 et à 50 % ont été observées par rhéologie. Les composites modifiés ont montré une meilleure dispersion comparativement aux composites de MCC qui eux engendrent même la formation de réseau substrat-substrat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fc-fusion mimetic RpR 2 was prepared by disulfide bridging conjugation using a PEG in the place of the Fc. RpR 2 displayed higher affinity for VEGF than aflibercept caused primarily by a slower dissociation rate, which can prolong a drug at its site of action. RpRs have considerable potential for development as stable, organ specific therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infliximab is an antibody that neutralizes TNF-α and is used principally by systemic administration to treat many inflammatory disorders. We prepared the antibody mimetic Fab-PEG-Fab (FpFinfliximab) for direct intravitreal injection to assess whether such formulations have biological activity and potential utility for ocular use. FpFinfliximab was designed to address side effects caused by antibody degradation and the presence of the Fc region. Surface plasmon resonance analysis indicated that infliximab and FpFinfliximab maintained binding affinity for both human and murine recombinant TNF-α. No Fc mediated RPE cellular uptake was observed for FpFinfliximab. Both Infliximab and FpFinfliximab suppressed ocular inflammation by reducing the number of CD45+ infiltrate cells in the EAU mice model after a single intravitreal injection at the onset of peak disease. These results offer an opportunity to develop and formulate for ocular use, FpF molecules designed for single and potentially multiple targets using bi-specific FpFs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and aims: Copper (Cu) is a well studied trace element but little is known about Cu evolution in long term endoscopic gastrostomy (PEG) feeding. We aimed to evaluate the evolution serum Cu since the gastrostomy until 12 weeks after the procedure in PEG patients fed with homemade meals. Methods: A prospective observational study was performed evaluating serum copper, albumin, transferrin and body mass index (BMI) at the time of the gastrostomy, 4 weeks and 12 weeks after. Data also included age, gender, NRS 2002 and nature of the underlying disease causing dysphagia: head and neck cancer (HNC) or neurological dysphagia (ND). After gastrostomy, patients were fed with homemade PEG meals. Results: One hundred and forty-six patients enrolled, 89 men, aged 21-95 years, 90 with neurologic dysphagia (ND), and 56 with head and neck cancer (HNC). 78 (53%) showed low BMI. Initially, Cu ranged 42-160 μg/dl (normal: 70-140 μg/dl); 130 patients (89%) presented normal Cu, 16 (11%) presented hypocupremia, 53% low albumin (n = 77), and 94 (65%) low transferrin. After 4 weeks, 93% presented normal Cu, 7% presented hypocupremia, low albumin was present in 34%, and low transferrin in 52%. After 12 weeks, 95% presented normal Cu, 5% presented hypocupremia, low albumin was present in 25%, and low transferrin in 32%. Comparing age, gender, underlying disease, BMI, albumin and transferrin, there were no significant differences on serum Cu. Conclusions: Most patients present normal serum Cu when gastrostomy is performed. For patients presenting hypocupremia before gastrostomy, homemade meals are effective for normalizing serum Cu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and aims - Endoscopic gastrostomy (PEG) patients usually present protein-energy malnutrition, but little is known about selenium deficiency. We aimed to assess serum selenium evolution when patients underwent PEG, after 4 and 12 weeks. We also evaluated the evolution of albumin, transferrin and Body Mass Index and the influence of the nature of the underlying disease. Methods - A blood sample was obtained before PEG (T0), after 4 (T1) and 12 (T3) weeks. Selenium was assayed using GFAAS (Furnace Atomic Absorption Spectroscopy). The PEG patients were fed through homemade meals. Patients were studied as a whole and divided into two groups: head and neck cancer (HNC) and neurological dysphagia (ND). Results - We assessed 146 patients (89 males), between 21-95 years old: HNC-56; ND-90. Normal values of selenium in 79% (n=115); low albumin in 77, low transferrin in 94, low values for both serum proteins in 66. Low BMI in 78. Selenium has slow evolution, with most patients still displaying normal Selenium at T3 (82%). Serum protein levels increase from T0 to T3, most patients reaching normal values. The nature of the underlying disease is associated with serum proteins but not with selenium. Conclusions - Low serum selenium is uncommon when PEG is performed, after 4 and 12 weeks of enteral feeding and cannot be related with serum proteins levels or dysphagia cause. Enteral nutrition using customized homemade kitchen meals is satisfactory to prevent or correct Selenium deficiency in the majority of PEG patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) have been studied as a prominent class of high performance electronic materials for next generation electronics. Their geometry dependent electronic structure, ballistic transport and low power dissipation due to quasi one dimensional transport, and their capability of carrying high current densities are some of the main reasons for the optimistic expectations on SWNTs. However, device applications of individual SWNTs have been hindered by uncontrolled variations in characteristics and lack of scalable methods to integrate SWNTs into electronic devices. One relatively new direction in SWNT electronics, which avoids these issues, is using arrays of SWNTs, where the ensemble average may provide uniformity from device to device, and this new breed of electronic material can be integrated into electronic devices in a scalable fashion. This dissertation describes (1) methods for characterization of SWNT arrays, (2) how the electrical transport in these two-dimensional arrays depend on length scales and spatial anisotropy, (3) the interaction of aligned SWNTs with the underlying substrate, and (4) methods for scalable integration of SWNT arrays into electronic devices. The electrical characterization of SWNT arrays have been realized by polymer electrolyte-gated SWNT thin film transistors (TFTs). Polymer electrolyte-gating addresses many technical difficulties inherent to electrical characterization by gating through oxide-dielectrics. Having shown polymer electrolyte-gating can be successfully applied on SWNT arrays, we have studied the length scaling dependence of electrical transport in SWNT arrays. Ultrathin films formed by sub-monolayer surface coverage of SWNT arrays are very interesting systems in terms of the physics of two-dimensional electronic transport. We have observed that they behave qualitatively different than the classical conducting films, which obey the Ohm’s law. The resistance of an ultrathin film of SWNT arrays is indeed non-linear with the length of the film, across which the transport occurs. More interestingly, a transition between conducting and insulating states is observed at a critical surface coverage, which is called percolation limit. The surface coverage of conducting SWNTs can be manipulated by turning on and off the semiconductors in the SWNT array, leading to the operation principle of SWNT TFTs. The percolation limit depends also on the length and the spatial orientation of SWNTs. We have also observed that the percolation limit increases abruptly for aligned arrays of SWNTs, which are grown on single crystal quartz substrates. In this dissertation, we also compare our experimental results with a two-dimensional stick network model, which gives a good qualitative picture of the electrical transport in SWNT arrays in terms of surface coverage, length scaling, and spatial orientation, and briefly discuss the validity of this model. However, the electronic properties of SWNT arrays are not only determined by geometrical arguments. The contact resistances at the nanotube-nanotube and nanotube-electrode (bulk metal) interfaces, and interactions with the local chemical groups and the underlying substrates are among other issues related to the electronic transport in SWNT arrays. Different aspects of these factors have been studied in detail by many groups. In fact, I have also included a brief discussion about electron injection onto semiconducting SWNTs by polymer dopants. On the other hand, we have compared the substrate-SWNT interactions for isotropic (in two dimensions) arrays of SWNTs grown on Si/SiO2 substrates and horizontally (on substrate) aligned arrays of SWNTs grown on single crystal quartz substrates. The anisotropic interactions associated with the quartz lattice between quartz and SWNTs that allow near perfect horizontal alignment on substrate along a particular crystallographic direction is examined by Raman spectroscopy, and shown to lead to uniaxial compressive strain in as-grown SWNTs on single crystal quartz. This is the first experimental demonstration of the hard-to-achieve uniaxial compression of SWNTs. Temperature dependence of Raman G-band spectra along the length of individual nanotubes reveals that the compressive strain is non-uniform and can be larger than 1% locally at room temperature. Effects of device fabrication steps on the non-uniform strain are also examined and implications on electrical performance are discussed. Based on our findings, there are discussions about device performances and designs included in this dissertation. The channel length dependences of device mobilities and on/off ratios are included for SWNT TFTs. Time response of polymer-electrolyte gated SWNT TFTs has been measured to be ~300 Hz, and a proof-of-concept logic inverter has been fabricated by using polymer electrolyte gated SWNT TFTs for macroelectronic applications. Finally, I dedicated a chapter on scalable device designs based on aligned arrays of SWNTs, including a design for SWNT memory devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients who underwent endoscopic gastrostomy (PEG) present protein-energy malnutrition, but little is known about Trace Elements (TE), Zinc (Zn), Copper (Cu), Selenium (Se), Iron (Fe), Chromium (Cr). Our aim was the evaluation of serum TE in patients who underwent PEG and its relationship with serum proteins, BMI and nature of underlying disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este documento tiene como objetivo brindar al estudiante una breve introducción a los diferentes regímenes de cambio que han existido en Colombia; para ello se presenta una breve descripción de los diferentes mecanismos que se han empleado en Colombia para regular el mercado de moneda extranjera desde la segunda mitad del siglo XX; de igual forma se presenta una aproximación intuitiva para entender el funcionamiento de los diferentes regímenes. Está dirigido principalmente a estudiantes de pregrado de economía, pero por la sencillez del lenguaje, puede ser de utilidad para cualquier estudiante o profesional interesado en la política económica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theobromine is an alkaloid present in cocoa and it is used in the treatment of atherosclerosis, hypertension, angina, among others. Due to its importance, the aim of this work consists on the development of an efficient and sustainable technology for the extraction of theobromine from cocoa beans. For the development of a purification technique for theobromine extracted from cocoa, aqueous biphasic systems (ABS) composed of ionic liquids (ILs) were initially studied to infer on the most promising systems. Cholinium-based ILs, based on a non-toxic and biocompatible cation, were used combined with two polymers (PPG 400 and PEG 400) and an inorganic salt (K3PO4). The respective phase diagrams at 298 K and atmospheric pressure were determined, as well as their extraction efficiencies for theobromine. The results obtained indicate that K3PO4 has a greater ability to induce the formation of ABS compared to PEG 400 and PPG 400. ABS consisting of K3PO4 also have a high potential for the extraction of theobromine, with extraction efficiencies ranging between 96.4 and 99.9 %. Based on the most promising ILs for the purification step, they were further used in aqueous solution to extract theobromine from cocoa beans, with extraction yields ranging between 4.5% and 6.5 wt%. Finally, ABS were applied to the aqueous solutions containing theobromine from the cocoa extract, with extraction efficiencies ranging between 96.7 and 99.0%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modélisations moléculaires réalisés avec le logiciel HyperChem 8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1. PEG 6000 (>> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall (CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after destroying the physical structure of the CW. The comparison of the Al(3+), La(3+), Sr(2+), and Rb(+) binding capacity of the intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the higher hydrated ionic radius of Al(3+) compared with other cations (Al(3+) >> La(3+) > Sr(2+) > Rb(+)). In conclusion, the results provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity resulting from PEG 6000-induced dehydration of the root apoplast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The folding and targeting of membrane proteins poses a major challenge to the cell, as they must remain insertion competent while their highly hydrophobic transmembrane (TM) domains are transferred from the ribosome, through the aqueous cytosol and into the lipid bilayer. The biogenesis of a mature membrane protein takes place through the insertion and integration into the lipid bilayer. A number of TM proteins have been shown to gain some degree of secondary structure within the ribosome tunnel and to retain this conformation throughout maturation. Although studies into the folding and targeting of a number of membrane proteins have been carried out to date, there is little information on one of the largest class of eukaryotic membrane proteins; the G-protein-coupled receptors (GPCRs). This project studies the early folding events of the human ortholog of GPR35. To analyse the structure of the 1st TM domain, intermediates were generated and assessed by the biochemical method of pegylation (PEG-MAL). A structurally-similar microbial opsin (Bacterioopsin) was also used to investigate the differences in the early protein folding within eukaryotic and prokaryotic translation systems. Results showed that neither the 1st TM domain of GPR35 nor Bacterioopsin were capable of compacting in the ribosome tunnel before their N-terminus reached the ribosome exit point. The results for this assay remained consistent whether the proteins were translated in a eukaryotic or prokaryotic translation system. To examine the communication mechanism between the ribosome, the nascent chain and the protein targeting pathway, crosslinking experiments were carried out using the homobifunctional lysine cross-linker BS3. Specifically, the data generated here show that the nascent chain of GPR35 reaches the ribosomal protein uL23 in an extended conformation and interacts with the SRP protein as it exits the ribosome tunnel. This confirms the role of SRP in the co-translational targeting of GPR35. Using these methods insights into the early folding of GPCRs has been obtained. Further experiments using site-directed mutagenesis to reduce hydrophobicity in the 1st TM domain of GPR35, highlighted the mechanisms by which GPCRs are targeted to the endoplasmic reticulum. Confirming that hydrophobicity within the signal anchor sequence is essential of SRP-dependent targeting. Following the successful interaction of the nascent GPR35 and SRP, GPR35 is successfully targeted to ER membranes, shown here as dog pancreas microsomes (DPMs). Glycosylation of the GPR35 N-terminus was used to determine nascent chain structure as it is inserted into the ER membrane. These glycosylation experiments confirm that TM1 has obtained its compacted state whilst residing in the translocon. Finally, a site-specific cross-linking approach using the homobifunctional cysteine cross-linker, BMH, was used to study the lateral integration of GPR35 into the ER. Cross-linking of GPR35 TM1 and TM2 could be detected adjacent to a protein of ~45kDa, believed to be Sec61α. The loss of this adduct, as the nascent chain extends, showed the lateral movement of GPR35 TM1 from the translocon was dependent on the subsequent synthesis of TM2.