971 resultados para Neutralization-reionization mass spectrometry
Resumo:
The extensive use of antineoplastic agents in chemotherapy may be at risk to health care workers involved in the preparation and administration of these drugs. In this study cyclophosphamide, a drug classified as a human carcinogen, was quantified by adapting a previous analytical method using gas chromatography coupled to mass spectrometry (GC-MS) after solid phase extraction with diatomaceous earth. The drug was measured by analysis in surfaces (wipe samples) and gloves, collected from four different hospitals, before and after the practice of cleaning procedures, and the use of a closed-system device for the preparation and administration. Validation results were satisfactory and cyclophosphamide levels ranging from below the quantification limit to 141000 ng. Our findings demonstrated that surfaces and materials contamination was found in all hospitals during the traditional open technique for preparation and administration of cyclophosphamide and a significant reduction in contamination when a closed-system device was used. However, some values were considered unexpected, especially those obtained from samples collected after the cleaning surfaces.
Resumo:
Background: Cobalamin (Cbl) and folate deficiencies and gene polymorphism of key enzymes or carriers can impair homocysteine metabolism and may change the serum values of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). We investigated the nutritional and genetic determinants for total homocysteine (tHcy), methylmalonic acid (MMA) and SAM/SAH in healthy Brazilian childbearing-age women. Methods: Serum concentrations of Cbl, folate, red blood cell folate, ferritin, tHcy, MMA, SAM, SAH and other metabolites were measured in 102 healthy unrelated women. The genotypes for MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G, TC2 C776G, TC2 A67G and RFCI A80G gene polymorphisms were identified by PCR-RFLP. Results: Serum folate and Cbl were inversely correlated with tHcy and serum MMA, respectively. Cbl deficiency was associated with increased MMA and reduced alpha-aminobutyrate, serine and N-methylglycine concentrations. No variable was associated with SAM/SAH ratio. In addition, gene polymorphisms were not selected as determinants for tHcy, MMA and SAM/SAH ratio. Iron, Cbl and folate deficiencies were found respectively in 30.4%, 22.5% and 2.0% of individuals studied. Conclusions: There was a high frequency of Cbl and iron deficiency in this group of childbearing-age women. Serum folate and Cbl were the determinants of serum tHcy and MMA concentration, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The acute poisoning of chronic renal patients during hemodialysis sessions in 1996 in Caruaru City (Pernambuco State, Brazil) stimulated an intensive search for the cause of this severe complication. This search culminated in the identification of microcystins (MC), hepatotoxic cyclic heptapeptides produced by cyanobacteria, as the causative agents. More than ten years later, additional research data provides us with a better understanding of the factors related to cyanobacterial bloom occurrence and production of MC in Brazil and other South American countries. The contamination of water bodies and formation of toxic blooms remains a very serious concern, especially in countries in which surface water is used as the main source for human consumption. The purpose of this review is to highlight the discoveries of the past 15 years that have brought South American researchers to their current level of understanding of toxic cyanobacteria species and that have contributed to their knowledge of factors related to MC production, mechanisms of action and consequences for human health and the environment. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Paraquat is a broad-spectrum contact herbicide that has been encountered worldwide in several cases of accidental, homicidal, and suicidal poisonings. The pulmonary toxicity of this compound is related to the depletion of NADPH in the pneumocytes, which is continuously consumed by the reduction/oxidation of paraquat and reductase enzyme systems in the presence of O(2) (redox cycling). Based on this mechanism, an enzymatic-spectrophotometric method was developed for the determination of paraquat in urine samples. The velocity of NADPH consumption was monitored at 340 nm, every 10 s during 15 min. The velocity of NADPH oxidation correlated with the paraquat levels found in samples. The enzymatic-spectrophotometric method showed to be sensitive, making possible the detection of paraquat in urine samples at concentrations as low as 0.05 mg/L.
Resumo:
NUNES ALVES, M. J. N., M. R. DOS SANTOS, R. G. DIAS, C. A. AKIHO, M. C. LATERZA, M. U. P. B. RONDON, R. L. DE MORAES MOREAU, and C. E. NEGRAO. Abnormal Neurovascular Control in Anabolic Androgenic Steroids Users. Med. Sci. Sports Exerc., Vol. 42, No. 5, pp. 865-871, 2010. Purpose: Previous studies showed that anabolic androgenic steroids (AAS) increase vascular resistance and blood pressure (BP) in humans. In this study, we tested the hypotheses 1) that AAS users would have increased muscle sympathetic nerve activity (MSNA) and reduced forearm blood flow (FBF) compared with AAS nonusers and 2) that there would be an association between MSNA and 24-h BP. Methods: Twelve AAS users aged 31 +/- 2 yr (means +/- SE) and nine age-matched AAS nonusers aged 29 T 2 yr participated in the study. All individuals were involved in strength training for at least 2 yr. AAS was determined by urine test (chromatography-mass spectrometry). MSNA was directly measured by microneurography technique. FBF was measured by venous occlusion plethysmography. BP monitoring consisted of measures of BP for 24 h. Results: MSNA was significantly higher in AAS users than that in AAS nonusers (29 +/- 3 vs 20 +/- 1 bursts per minute, P = 0.01). FBF (1.92 +/- 0.17 vs 2.77 +/- 0.24 mL.min(-1).100 mL(-1), P = 0.01) and forearm vascular conductance (2.01 +/- 0.17 vs 2.86 +/- 0.31 U, P = 0.02) were significantly lower in AAS users than that in AAS nonusers. Systolic (131 +/- 4 vs 120 +/- 3 mm Hg, P = 0.001), diastolic (74 +/- 4 vs 68 +/- 3 mm Hg, P = 0.02), and mean BP (93 +/- 4 vs 86 +/- 3 mm Hg, P = 0.005) and heart rate (74 +/- 3 vs 68 +/- 3 bpm, P = 0.02) were significantly higher in AAS users when compared with AAS nonusers. Further analysis showed that there was a significant correlation between MSNA and 24-h mean BP (r = 0.75, P = 0.002). Conclusions: AAS increases MSNA and reduces muscle blood flow in young individuals. In addition, the increase in BP levels in AAS users is associated with augmented sympathetic outflow. These findings suggest that AAS increases the susceptibility for cardiovascular disease in humans.
Resumo:
The alkyl chain of anatoxin-a(s) (cyclic guanidines), which can be used as an intermediate in the total synthesis of anatoxin-a(s), was synthesized in both racemic and enantiomerically pure forms. These enantiomerically pure cyclic compounds can be used as chiral inductors in some reactions. The two racemic routes disclosed herein have the advantages of high overall yield and mild reaction conditions. Both routes proceed through an intermediate 2,3-diaminoacid - an important synthetic scaffold - with good yields. Furthermore, the N,N-dimethyl-2(tosylimino)imidazolidine-4-carboxamide might be obtained from 2-(tosylimino)imidazolidine-4-carboxylic acid followed by selective reduction of the carbonyl functionality. All synthesized compounds were analyzed by mass spectrometry and (1)H NMR and (13)C NMR spectroscopy.
Resumo:
Glycoproteins from the total vesicular fluid of Taenia crassiceps (VF-Tc) were prepared using three different purification methods, consisting of ConA-lectin affinity chromatography (ConA-Tc), preparative electrophoresis (SDS-PAGE) (14gp-Tc), and monoclonal antibody immunoaffinity chromatography (18/14-Tc). The complex composition represented by the VF-Tc and ConA-Tc antigens revealed peptides ranging from 101 - to 14-kDa and from 92- to 12-kDa, respectively. Immunoblotting using lectins confirmed glucose/mannose (glc/man) residues in the 18- and 14-kDa peptides, which are considered specific and immunodominant for the diagnosis of cysticercosis, and indicated that these fractions are glycoproteins. Serum antibodies from a patient with neurocysticercosis that reacted to the 14gp band from T. crassiceps (Tc) were eluted from immunoblotting membranes and showed reactivity to 14gp from Taenia solium. In order to determine the similar peptide sequence, the N-terminal amino acid was determined and analyzed with sequences available in public databases. This sequence revealed partial homology between T. crassiceps and T solium peptides. In addition, mass spectrometry along with theoretical M(r) and pI of the 14gp-Tc point suggested a close relationship to some peptides of a 150-kDa protein complex of the T solium previously described. The identification of these common immunogenic sites will contribute to future efforts to develop recombinant antigens and synthetic peptides for immunological assays. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A nuclear magnetic resonance ((1)H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by (1)H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 mu g/mL Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: The methylenetetrahydrofolate reductase (MTHFR), glutamate carboxypeptidase II (GCPII) and reduced folate carrier (RFC1) gene polymorphisms were associated with folate status. We investigated the effects of these polymorphisms on serum folate (SF) and folate-related metabolites in mothers and their neonates. Methods: Cobalamin (Cbl), SF, total homocysteine (tHcy), methylmalonic acid (MMA), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured in 275 healthy women and their neonates. MTHFR C677T, GCPII C1561T and RFC1 A80G polymorphisms were determined by PCR-RFLP. Results: Maternal tHcy was affected individually by MTHFR C677T and GCPII C1561T polymorphisms and by combined genotypes MTHFR 677TT/GCPII 1561CC and MTHFR 677TT/RFC1 80AG. The MTHFR and RFC1 polymorphisms were not associated with variations in vitamins or SAM, SAH and MMA in neonates. Neonatal tHcy was predicted directly by maternal tHcy and inversely by maternal SF, neonatal Cbl and neonatal RFC1 80G allele (AG+GG genotypes). Maternal MMA and SAM/SAH were predicted by creatinine and Cbl, respectively. Neonatal MMA was predicted by maternal MMA and GCPII 1561T allele (CT+TT genotypes) and by neonatal Cbl. Conclusions: Maternal tHcy was affected by MTHFR C677T, RFC1 A80G and GCPII C1561T polymorphisms. Maternal GCPII C1561T variant was associated with neonatal MMA. Neonatal RFC1 A80G polymorphism influenced tHcy in neonates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To examine the association between methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C), methionine synthase (MTR) A2756G and methionine synthase reductase (MTRR) A66G gene polymorphisms and total homocysteine (tHcy), methylmalonic acid (MMA) and S-adenosylmethionine/ S-adenosylhomocysteine (SAM/SAH) levels; and to evaluate the potential interactions with folate or cobalamin (Cbl) status. Subjects/ Methods: Two hundred seventy-five healthy women at labor who delivered full-term normal babies. Cbl, folate, tHcy, MMA, SAM and SAH were measured in serum specimens. The genotypes for polymorphisms were determined by PCR-restriction fragment length polymorphism ( RFLP). Results: Serum folate, MTHFR 677T allele and MTR 2756AA genotypes were the predictors of tHcy levels in pregnant women. Serum Cbl and creatinine were the predictors of SAM/SAH ratio and MMA levels, respectively. The gene polymorphisms were not determinants for MMA levels and SAM/SAH ratios. Low levels of serum folate were associated with elevated tHcy in pregnant women, independently of the gene polymorphisms. In pregnant women carrying MTHFR 677T allele, or MTHFR 1298AA or MTRR 66AA genotypes, lower Cbl levels were associated with higher levels of tHcy. Lower SAM/SAH ratio was found in MTHFR 677CC or MTRR A2756AA genotypes carriers when Cbl levels were lower than 142 pmol/l. Conclusions: Serum folate and MTHFR C677T and MTR A2576G gene polymorphisms were the determinants for tHcy levels. The interaction between low levels of serum Cbl and MTHFR (C677T or A1298C) or MTRR A66G gene polymorphisms was associated with increased tHcy.
Resumo:
A novel microemulsion electrokinetic capillary chromatography (MEEKC) method has been developed which separates a range of nine steroids. A microemulsion containing ethyl acetate, butan-1-ol, sodium dodecyl sulfate, 15% (v/v) acetonitrile and 12 mmol L(-1) sodium tetraborate aqueous buffer at pH 9.2 was used with direct UV detection at 200 nm. The method was validated for the determination of 17 beta-estradiol content, a hormone steroid, in transdermal patches. Adequate sensitivity (DL = 0.88 mu g mL(-1); QL = 2.65 mu g mL(-1)) without interference from sample excipients was obtained. 17 beta-Estradiol migrates in approximately 5.4 min. Estrone was used as internal standard and acceptable precision (< 1.2% RSD), linearity (r = 0.9996; range from 40.0 to 60.0 mu g mL(-1)), and recovery (100.4 +/- A 0.9% at three concentration levels) were obtained. The principal advantage of the method is that it is rapid and avoids the need of time consuming and expensive sample pre-treatment steps.
Resumo:
The purpose of this study was to evaluate bioequivalence of two commercial 8 mg tablet formulations of ondansetrona available ill the Brazilian market. In this study, a simple, rapid, sensitive and selective liquid chromarography-tandem mass spectrometry method is described for the determination of ondansetron in human plasma samples. The method was validated over a concentration range of 2.5-60 ng/ml and used in a bioequivalence trial between orally disintegrating and conventional tablet ondansetron formulations, to assess its usefulness in this kind of Study. Vonau flash (R) (Biolab Sanus Farmaceutica, Brazil, as test formulations) and Zofran (R) (GlaxoSmithKline, Brazil, as reference formulation) were evaluated following a single 8 mg close to 23 healthy volunteers of both genders. The dose was administered after an overnight fast according to a two-way crossover design. Bioequivalence between the products was determinated by Calculating 90% confidence interval (90% CI) for the ratio of C(max), AUC(0-t) and AUC(0-(sic)) values for the test and reference products, using logarithmically transformed data. The 90% confidence interval for the ratio of C(max) (87.5-103.8%), AUC(0-t) (89.3-107.2%) and AUC(0--(sic)) (89.7-106.0%) values for the test and reference products is Within the 80-125% interval, proposed by FDA, EMEA and ANVISA. It was concluded that two ondansetron formulations are bioequivalent ill their rate and extent of absorption. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
Sibutramine hydrochloride monohydrate, chemically 1-(4-chlorophenyl)-N,N-dimethyl-alpha-(2-methylpropyl) hydrochloride monohydrate (SB center dot HCl center dot H2O), was approved by the U.S. Food and Drug Administration for the treatment of obesity. The objective of this study was to develop, validate, and compare methods using UV-derivative spectrophotometry (UVDS) and reversed-phase high-performance liquid chromatography (HPLC) for the determination of SB center dot HCl center dot H2O in pharmaceutical drug products. The UVDS and HPLC methods were found to be rapid, precise, and accurate. Statistically, there was no significant difference between the proposed UVDS and HPLC methods. The enantiomeric separation of SB was obtained on an alpha-1 acid glycoprotein column. The R- and S-sibutramine were eluted in < 5 min with baseline separation of the chromatographic peaks (alpha = 1.9 and resolution = 1.9).
Resumo:
PEGylation is a strategy that has been used to improve the biochemical properties of proteins and their physical and thermal stabilities. In this study, hen egg-white lysozyme (EC 3.2.1.17; LZ) was modified with methoxypolyethylene glycol-p-nitrophenyl carbonate (mPEG-pNP, MW 5000). This PEGylation of LZ produced conjugates that retained full enzyme activity with glycol chitosan, independent of degree of enzyme modification; its biological activity with the substrate Micrococcus lysodeikticus was altered according to its degree of modification. The conjugate obtained with a low degree of mPEG-pNP/NH(2) modification was studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), demonstrating a spectral peak at m/z 19,988 Da with 77% of its original enzymatic activity. Spectroscopic studies of Fourier transform infrared (FIR) and circular dichroism (CD) did not show any relevant differences in protein structure between the native and conjugate LZ. Studies of the effects of pH and temperature on PEGylated LZ indicated that the conjugate was active over a broad pH range, stable at 50 degrees C, and demonstrated resistance to proteolytic degradation. (C) 2010 Elsevier B.V. All rights reserved.