995 resultados para Mathematics. Trigonometric Functions. Geogebra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide water managers are increasingly challenged to allocate sufficient and affordable water supplies to different water use sectors without further degrading river ecosystems and their valuable services to mankind. Since 1950 human population almost tripled, water abstractions increased by a factor of four, and the number of large dam constructions is about eight times higher today. From a hydrological perspective, the alteration of river flows (temporally and spatially) is one of the main consequences of global change and further impairments can be expected given growing population pressure and projected climate change. Implications have been addressed in numerous hydrological studies, but with a clear focus on human water demands. Ecological water requirements have often been neglected or addressed in a very simplistic manner, particularly from the large-scale perspective. With his PhD thesis, Christof Schneider took up the challenge to assess direct (dam operation and water abstraction) and indirect (climate change) impacts of human activities on river flow regimes and evaluate the consequences for river ecosystems by using a modeling approach. The global hydrology model WaterGAP3 (developed at CESR) was applied and further developed within this thesis to carry out several model experiments and assess anthropogenic river flow regime modifications and their effects on river ecosystems. To address the complexity of ecological water requirements the assessment is based on three main ideas: (i) the natural flow paradigm, (ii) the perception that different flows have different ecological functions, and (iii) the flood pulse concept. The thesis shows that WaterGAP3 performs well in representing ecologically relevant flow characteristics on a daily time step, and therefore justifies its application within this research field. For the first time a methodology was established to estimate bankfull flow on a 5 by 5 arc minute grid cell raster globally, which is a key parameter in eFlow assessments as it marks the point where rivers hydraulically connect to adjacent floodplains. Management of dams and water consumption pose a risk to floodplains and riparian wetlands as flood volumes are significantly reduced. The thesis highlights that almost one-third of 93 selected Ramsar sites are seriously affected by modified inundation patterns today, and in the future, inundation patterns are very likely to be further impaired as a result of new major dam initiatives and climate change. Global warming has been identified as a major threat to river flow regimes as rising temperatures, declining snow cover, changing precipitation patterns and increasing climate variability are expected to seriously modify river flow regimes in the future. Flow regimes in all climate zones will be affected, in particular the polar zone (Northern Scandinavia) with higher river flows during the year and higher flood peaks in spring. On the other side, river flows in the Mediterranean are likely to be even more intermittent in the future because of strong reductions in mean summer precipitation as well as a decrease in winter precipitation, leading to an increasing number of zero flow events creating isolated pools along the river and transitions from lotic to lentic waters. As a result, strong impacts on river ecosystem integrity can be expected. Already today, large amounts of water are withdrawn in this region for agricultural irrigation and climate change is likely to exacerbate the current situation of water shortages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es ist allgemein bekannt, dass sich zwei gegebene Systeme spezieller Funktionen durch Angabe einer Rekursionsgleichung und entsprechend vieler Anfangswerte identifizieren lassen, denn computeralgebraisch betrachtet hat man damit eine Normalform vorliegen. Daher hat sich die interessante Forschungsfrage ergeben, Funktionensysteme zu identifizieren, die über ihre Rodriguesformel gegeben sind. Zieht man den in den 1990er Jahren gefundenen Zeilberger-Algorithmus für holonome Funktionenfamilien hinzu, kann die Rodriguesformel algorithmisch in eine Rekursionsgleichung überführt werden. Falls die Funktionenfamilie überdies hypergeometrisch ist, sogar laufzeiteffizient. Um den Zeilberger-Algorithmus überhaupt anwenden zu können, muss es gelingen, die Rodriguesformel in eine Summe umzuwandeln. Die vorliegende Arbeit beschreibt die Umwandlung einer Rodriguesformel in die genannte Normalform für den kontinuierlichen, den diskreten sowie den q-diskreten Fall vollständig. Das in Almkvist und Zeilberger (1990) angegebene Vorgehen im kontinuierlichen Fall, wo die in der Rodriguesformel auftauchende n-te Ableitung über die Cauchysche Integralformel in ein komplexes Integral überführt wird, zeigt sich im diskreten Fall nun dergestalt, dass die n-te Potenz des Vorwärtsdifferenzenoperators in eine Summenschreibweise überführt wird. Die Rekursionsgleichung aus dieser Summe zu generieren, ist dann mit dem diskreten Zeilberger-Algorithmus einfach. Im q-Fall wird dargestellt, wie Rekursionsgleichungen aus vier verschiedenen q-Rodriguesformeln gewonnen werden können, wobei zunächst die n-te Potenz der jeweiligen q-Operatoren in eine Summe überführt wird. Drei der vier Summenformeln waren bislang unbekannt. Sie wurden experimentell gefunden und per vollständiger Induktion bewiesen. Der q-Zeilberger-Algorithmus erzeugt anschließend aus diesen Summen die gewünschte Rekursionsgleichung. In der Praxis ist es sinnvoll, den schnellen Zeilberger-Algorithmus anzuwenden, der Rekursionsgleichungen für bestimmte Summen über hypergeometrische Terme ausgibt. Auf dieser Fassung des Algorithmus basierend wurden die Überlegungen in Maple realisiert. Es ist daher sinnvoll, dass alle hier aufgeführten Prozeduren, die aus kontinuierlichen, diskreten sowie q-diskreten Rodriguesformeln jeweils Rekursionsgleichungen erzeugen, an den hypergeometrischen Funktionenfamilien der klassischen orthogonalen Polynome, der klassischen diskreten orthogonalen Polynome und an der q-Hahn-Klasse des Askey-Wilson-Schemas vollständig getestet werden. Die Testergebnisse liegen tabellarisch vor. Ein bedeutendes Forschungsergebnis ist, dass mit der im q-Fall implementierten Prozedur zur Erzeugung einer Rekursionsgleichung aus der Rodriguesformel bewiesen werden konnte, dass die im Standardwerk von Koekoek/Lesky/Swarttouw(2010) angegebene Rodriguesformel der Stieltjes-Wigert-Polynome nicht korrekt ist. Die richtige Rodriguesformel wurde experimentell gefunden und mit den bereitgestellten Methoden bewiesen. Hervorzuheben bleibt, dass an Stelle von Rekursionsgleichungen analog Differential- bzw. Differenzengleichungen für die Identifikation erzeugt wurden. Wie gesagt gehört zu einer Normalform für eine holonome Funktionenfamilie die Angabe der Anfangswerte. Für den kontinuierlichen Fall wurden umfangreiche, in dieser Gestalt in der Literatur noch nie aufgeführte Anfangswertberechnungen vorgenommen. Im diskreten Fall musste für die Anfangswertberechnung zur Differenzengleichung der Petkovsek-van-Hoeij-Algorithmus hinzugezogen werden, um die hypergeometrischen Lösungen der resultierenden Rekursionsgleichungen zu bestimmen. Die Arbeit stellt zu Beginn den schnellen Zeilberger-Algorithmus in seiner kontinuierlichen, diskreten und q-diskreten Variante vor, der das Fundament für die weiteren Betrachtungen bildet. Dabei wird gebührend auf die Unterschiede zwischen q-Zeilberger-Algorithmus und diskretem Zeilberger-Algorithmus eingegangen. Bei der praktischen Umsetzung wird Bezug auf die in Maple umgesetzten Zeilberger-Implementationen aus Koepf(1998/2014) genommen. Die meisten der umgesetzten Prozeduren werden im Text dokumentiert. Somit wird ein vollständiges Paket an Algorithmen bereitgestellt, mit denen beispielsweise Formelsammlungen für hypergeometrische Funktionenfamilien überprüft werden können, deren Rodriguesformeln bekannt sind. Gleichzeitig kann in Zukunft für noch nicht erforschte hypergeometrische Funktionenklassen die beschreibende Rekursionsgleichung erzeugt werden, wenn die Rodriguesformel bekannt ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmonische Funktionen auf dem Bruhat-Tits-Gebäude der PGL(3) über Funktionenkörpern lassen sich als ein Analogon zu den auf der oberen Halbebene definierten klassischen Spitzenformen verstehen. An die Stelle des starken Abklingens der Spitzenformen tritt hier die Endlichkeit des Trägers modulo einer gewissen Untergruppe. Der erste Teil der vorliegenden Arbeit befaßt sich mit der Untersuchung und Charakterisierung dieses Trägers. Im weiteren Verlauf werden gewisse Konzepte der klassischen Theorie auf harmonische Funktionen übertragen. So wird gezeigt, daß diese sich ebenfalls als Fourierreihe darstellen lassen und es werden explizite Formeln für die Fourierkoeffizienten hergeleitet. Es stellt sich heraus, daß sich die Harmonizität in gewissen Relationen zwischen den Fourierkoeffizienten widerspiegelt und sich umgekehrt aus einem Satz passender Koeffizienten eine harmonische Funktion erzeugen läßt. Dies wird zur expliziten Konstruktion zweier quasi-harmonischer Funktionen genutzt, die ein Pendant zu klassischen Poincaré-Reihen darstellen. Abschließend werden Hecke-Operatoren definiert und Formeln für die Fourierkoeffizienten der Hecke-Transformierten einer harmonischen Funktion hergeleitet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ontic is an interactive system for developing and verifying mathematics. Ontic's verification mechanism is capable of automatically finding and applying information from a library containing hundreds of mathematical facts. Starting with only the axioms of Zermelo-Fraenkel set theory, the Ontic system has been used to build a data base of definitions and lemmas leading to a proof of the Stone representation theorem for Boolean lattices. The Ontic system has been used to explore issues in knowledge representation, automated deduction, and the automatic use of large data bases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional Data Analysis (FDA) deals with samples where a whole function is observed for each individual. A particular case of FDA is when the observed functions are density functions, that are also an example of infinite dimensional compositional data. In this work we compare several methods for dimensionality reduction for this particular type of data: functional principal components analysis (PCA) with or without a previous data transformation and multidimensional scaling (MDS) for diferent inter-densities distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households income distributions)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the techniques used to detect faults in dynamic systems is analytical redundancy. An important difficulty in applying this technique to real systems is dealing with the uncertainties associated with the system itself and with the measurements. In this paper, this uncertainty is taken into account by the use of intervals for the parameters of the model and for the measurements. The method that is proposed in this paper checks the consistency between the system's behavior, obtained from the measurements, and the model's behavior; if they are inconsistent, then there is a fault. The problem of detecting faults is stated as a quantified real constraint satisfaction problem, which can be solved using the modal interval analysis (MIA). MIA is used because it provides powerful tools to extend the calculations over real functions to intervals. To improve the results of the detection of the faults, the simultaneous use of several sliding time windows is proposed. The result of implementing this method is semiqualitative tracking (SQualTrack), a fault-detection tool that is robust in the sense that it does not generate false alarms, i.e., if there are false alarms, they indicate either that the interval model does not represent the system adequately or that the interval measurements do not represent the true values of the variables adequately. SQualTrack is currently being used to detect faults in real processes. Some of these applications using real data have been developed within the European project advanced decision support system for chemical/petrochemical manufacturing processes and are also described in this paper

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, robustness of parametric systems is analyzed using a new approach to interval mathematics called Modal Interval Analysis. Modal Intervals are an interval extension that, instead of classic intervals, recovers some of the properties required by a numerical system. Modal Interval Analysis not only simplifies the computation of interval functions but allows semantic interpretation of their results. Necessary, sufficient and, in some cases, necessary and sufficient conditions for robust performance are presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction to Network Mathematics provides college students with basic graph theory to better understand the Internet

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exam questions and solutions in LaTex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exam questions and solutions in PDF

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exam questions and solutions in PDF

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exam questions and solutions in LaTex. Diagrams for the questions are all together in the support.zip file, as .eps files