Priors Stabilizers and Basis Functions: From Regularization to Radial, Tensor and Additive Splines


Autoria(s): Girosi, Federico; Jones, Michael; Poggio, Tomaso
Data(s)

20/10/2004

20/10/2004

01/06/1993

Resumo

We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.

Formato

27 p.

768627 bytes

2437996 bytes

application/octet-stream

application/pdf

Identificador

AIM-1430

CBCL-075

http://hdl.handle.net/1721.1/7212

Idioma(s)

en_US

Relação

AIM-1430

CBCL-075

Palavras-Chave #regularization theory #radial basis functions #additivesmodels #prior knowledge #multilayer perceptrons