979 resultados para COLLOIDAL SEMICONDUCTOR NANOCRYSTALS
Resumo:
Diffusion coefficients provide uniquely detailed and easily interpreted information on molecular organization and phase structure. They are quite sensitive to structural changes, and to binding and association phenomena, in particular for liquid colloidal or macromolecular systems. This paper describes the principles of diffusion measurements in liquids by pulsed magnetic field gradient spin-echo (PFG-SE) NMR spectroscopy. The important PFG-SE technique known as DOSY is presented and discussed. This is a noninvasive technique that can provide individual multicomponent translational diffusion coefficients with good precision in a few minutes, without the need for radioactive isotopic labelling.
Resumo:
Tässä työssä tarkastellaan taajuusmuuttajan vanhenemista syklisissä käytöissä puolijohdetehokomponenttien osalta. Laitteiden vikaantumisprosessien analysoimiseksi työssä suunnitellaan syklinen kestotestausjärjestelmä, joka mahdollistaa useamman taajuusmuuttajan yhtäaikaisen vanhentamisen. Jaksottaisesti toistuvat kuormitussyklit rasittavat termomekaanisesti taajuusmuuttajan tehomoduulin sisäisiä rakenteita suurten lämpötilavaihtelujen johdosta. Teoriaosuuden pääpaino kohdistuu puolijohdetehokomponenttien rakenteeseen, vikaantumisprosesseihin ja eliniän kartoittamiseen. Työssä käydään läpi yleisimpien pienijännitteisten moottorinohjausinverttereiden tehomoduulien mekaaniset rakenteet, tyypillisemmät syklisestä kuormituksesta johtuvat vikaantumisprosessit sekä puolijohdetehokomponenttivalmistajien käyttämät syklisen eliniän testausmenetelmät. Loppuosassa työtä suunnitellaan taajuusmuuttajan syklinen kestotestausjärjestelmä laitteiden keinotekoista vanhentamista varten. Testausjärjestelmällä voidaan kuormittaa useampaa taajuusmuuttajaa vuorottain mielivaltaisella kuormitusvirtaprofiililla. Laitteita vanhennettiin kaksi testierää kuormittamalla niitä jaksottaisesti hissikäytön tyypillisellä kuormitusprofiililla. Puolijohdetehokomponentin vanhenemisen edistystä seurattiin termisen impedanssiketjun mittausmenetelmällä, joka perustuu IGBT:n kollektoriemitterijännitteen lämpötilariippuvuuteen. Testilaitteiden puolijohdetehokomponentit hajosivat syklisen eliniän päättymiseen teoriassa esitettyjen vikaantumisprosessien seurauksesta. Tehomoduulien vika-analyysi osoittaa syklisen kestotestausjärjestelmän soveltuvaksi menetelmäksi tutkia erilaisten kuormitusprofiilien vaikutusta taajuusmuuttajan vanhenemiseen.
Resumo:
Advancements in power electronic semiconductor switching devices have lead to significantly faster switching times. In motor and generator applications, the fast switching times of pulse width modulated (PWM) inverters lead to overvoltages caused by voltage reflections with shorter and shorter cables. These excessive overvoltages may lead to a failure of the electrical machine in a matter of months. In this thesis, the causes behind the overvoltage phenomenon as well as its different mitigation techniques are studied. The most suitable techniques for mitigating the overvoltage phenomenon in wind power generator applications are chosen based on both simulations and actual measurements performed on a prototype. An RC filter at the terminals of the electrical machine and an inverter output filter designed to reduce the rise and fall times of voltage pulses are presented as a solution to the overvoltage problem. The performance and losses of both filter types are analysed.
Resumo:
In the present work electroluminescence in Si-SiO2 structures has been investigated. Electroluminescence has been recorded in the range of 250-900 nm in a system of electrolyte-insulator-semiconductor at the room temperature. The heating process of electrons in SiO2 was studied and possibility of separation it into two phases has been shown. The nature of luminescence centers and the model of its formation were proposed. This paper also includes consideration of oxide layer formation. Charge transfer mechanisms have been attended as well. The nature of electroluminescence is understood in detail. As a matter of fact, electron traps in silicon are the centers of luminescence. Electroluminescence occurs when electrons move from one trap to another. Thus the radiation of light quantum occurs. These traps appear as a result of the oxide growth. At the same time the bonds deformation of silicon atoms with SiOH groups is not excludes. As a result, dangling bonds are appeared, which are the trapping centers or the centers of luminescence.
Resumo:
Polymeric nanoparticle systems such as nanocapsules and nanospheres present potential applications for the administration of therapeutic molecules. The physico-chemical characteristics of nanoparticle suspensions are important pre-requisites of the success of any dosage form development. The purpose of this review is to present the state of the art regarding the physico-chemical characterization of these drug carriers, in terms of the particle size distribution, the morphology, the polymer molecular weight, the surface charge, the drug content and the in vitro drug release profiles. Part of the review is devoted to the description of the techniques to improve the stability of colloidal systems.
Resumo:
This paper describes the construction of an eletrical current source and of a probe to be used in the measurement of eletrical conductivity through a four-point probe method. These pieces of equipments can be obtained at the low price of US$ 50.00 and are adequate for eletrical conductivity measurements in the semiconductor range, that is from 10-1 to 10-6 S cm-1.
Resumo:
In the literature survey retention mechanisms, factors effecting retention and microparticles were studied. Also commercial microparticle retention systems and means to measure retention were studied. Optical retention measurement with RPA and Lasentec FBRM was studied. The experimental part contains study of different cationic polyacrylamides, anionic silica, bentonite and new generation micropolymer. In these studies the dosage, dosing order and dosing history were changing factors. The experimental work was done with RPA-apparatus with which, the retention process can be followed in real time. In testing was found that silica yielded better retention, when dosed nontraditionally before the polymer. Also silica was very dependant on the polymer dosage. With bentonite good colloidal retention was achieved with relatively low doses. Unlike silica bentonite was not dependant on polymer dosage. The relation of bentonite and polymer dosage is more defining when high retention is wanted. With 3-component systems using bentonite very high retention was achieved. With silica no improvement in retention was found in 3-component systems compared to dual component systems.
Resumo:
A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.
Resumo:
An analytical theory to describe the combined effects of the epitaxial layer thickness and the ohmic contact on the noise properties of Schottky barrier diodes is presented. The theory, which provides information on both the local and the global noise properties, takes into account the finite size of the epitaxial layer and the effects of the back ohmic contact, and applies to the whole range of applied bias. It is shown that by scaling down the epitaxial layer thickness, the current regime in which the noise temperature displays a shot-noise-like behavior increases at the cost of reducing the current range in which the thermal-noise-like behavior dominates. This improvement in noise temperature is limited by the effects of the ohmic contact, which appear for large currents. The theory is formulated on general trends, allowing its application to the noise analysis of other semiconductor devices operating under strongly inhomogeneous distributions of the electric field and charge concentrations.
Resumo:
We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.
Resumo:
Self-sustained time-dependent current oscillations under dc voltage bias have been observed in recent experiments on n-doped semiconductor superlattices with sequential resonant tunneling. The current oscillations are caused by the motion and recycling of the domain wall separating low- and high-electric-field regions of the superlattice, as the analysis of a discrete drift model shows and experimental evidence supports. Numerical simulation shows that different nonlinear dynamical regimes of the domain wall appear when an external microwave signal is superimposed on the dc bias and its driving frequency and driving amplitude vary. On the frequency-amplitude parameter plane, there are regions of entrainment and quasiperiodicity forming Arnold tongues. Chaos is demonstrated to appear at the boundaries of the tongues and in the regions where they overlap. Coexistence of up to four electric-field domains randomly nucleated in space is detected under ac+dc driving.
Resumo:
Spatiotemporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.
Resumo:
A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.
Resumo:
An analytical theory to describe the combined effects of the epitaxial layer thickness and the ohmic contact on the noise properties of Schottky barrier diodes is presented. The theory, which provides information on both the local and the global noise properties, takes into account the finite size of the epitaxial layer and the effects of the back ohmic contact, and applies to the whole range of applied bias. It is shown that by scaling down the epitaxial layer thickness, the current regime in which the noise temperature displays a shot-noise-like behavior increases at the cost of reducing the current range in which the thermal-noise-like behavior dominates. This improvement in noise temperature is limited by the effects of the ohmic contact, which appear for large currents. The theory is formulated on general trends, allowing its application to the noise analysis of other semiconductor devices operating under strongly inhomogeneous distributions of the electric field and charge concentrations.
Resumo:
Thermal decomposition of [Bu4N]2[Zn(imnt)2] and [M(NH3)2(imnt)] complexes with M = Zn and Cd, and imnt = (bis 1,1-dicyanoethylene-2,2 dithiolate) in inert atmosphere was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Pyrolysis studies at different temperatures, 300, 400, 500, and 600 ºC, in N2 atmosphere were performed and the products were characterized by X-ray diffraction (XRD), infrared and Raman spectroscopy, and scanning electron microscopy (SEM). The products were identified as sulfide sub-micron particles, along with amorphous carbon. Particle sizes estimated by SEM were ca. 50 nm for the cationic complexes and 500 nm for the neutral complexes.