970 resultados para Bimodal oscillation
Resumo:
We obtained the high mobility Of mu(2K) = 1.78 x 10(6) cm(2)/V . s in Si-doped GaAs/AlGaAs two-dimensional electron gas (2DEG) structures. After the sample was illuminated by a light-emitting diode in magnetic fields up to 6 T at T = 2K, we did observe the persistent photoconductivity effect and the electron density increased obviously. The electronic properties of 2DEG have been studied by Quantum-Hall-effect and Shubnikov-de Haas (SdH) oscillation measurements. We found that the electron concentrations of two subbands increase simultaneity with the increasing total electron concentration, and the electron mobility also increases obviously after being illuminated. At the same time, we also found that the electronic quantum lifetime becomes shorter, and a theoretical explunation is given through the widths of integral quantum Hall plateaus.
Resumo:
We investigate theoretically the interplay between Zeeman splitting, Rashba spin-orbit interaction (RSOI), and Dresselhaus spin-orbit interaction (DSOI) and its influence on the magnetotransport property of two-dimensional electron gas (2DEG) at low temperature. Our theoretical results show that the nodes of the beating patterns of the magnetoresistivity rho(xx) for 2DEG with RSOI or DSOI alone depend sensitively on the total spin splitting induced by these three spin splitting mechanisms. It is interesting to find that the eigenstates in the presence of RSOI alone are connected with those in the presence of DSOI alone but with opposite Zeeman splitting by a time-reversal transformation. Consequently, the magnetoresistivities exhibit exactly the same oscillation patterns for these two cases. For strong RSOI or DSOI alone, the magneto-oscillation of rho(xx) shows two distinct periods. For 2DEG with both RSOI and DSOI, the beating patterns vanish for equal RSOI and DSOI strengths and vanishing Zeeman splitting. They will appear again, however, when Zeeman splitting or the difference between RSOI and DSOI strengths increases.
Resumo:
AlGaN/GaN high electron mobility transistor (HEMT) structures were grown on 2 inch sapphire substrates by MOCVD, and 0.8-mu m gate length devices were fabricated and measured. It is shown by resistance mapping that the HEMT structures have an average sheet resistance of approximately 380 Omega/sq with a uniformity of more than 96%. The 1-mm gate width devices using the materials yielded a pulsed drain current of 784 mA/mm at V-gs=0.5 V and V-ds=7 V with an extrinsic transconductance of 200 mS/mm. A 20-GHz unity current gain cutoff frequency (f(T)) and a 28-GHz maximum oscillation frequency (f(max)) were obtained. The device with a 0.6-mm gate width yielded a total output power of 2.0 W/mm (power density of 3.33 W/mm) with 41% power added efficiency (PAE) at 4 GHz.
Resumo:
Transport properties of two-dimensional electron gas (2DEG) are crucial to metamorphic high-electron-mobility transistors (MM-HEMT). We have investigated the variations of subband electron mobility and concentration versus temperature from Shubnikov-de Hass oscillations., and variable temperature Hall measurements. The results indicate that the electrical performance is the best when the In content is 0.65 in the channel for MM-HEMT. When the In content exceeds 0.65, a large lattice mismatch will cause dislocations and result in the decrease of mobility and the fall of performance in materials and devices.
Resumo:
We derive the modified rate equations for an Aharonov-Bohm (AB) ring with two transversely coupled quantum dots (QD's) embedded in two arms in the presence of a magnetic field. We find that the interdot coupling between the two QD's can cause a temporal oscillation in electron occupation at the initial stage of the quantum dynamics, while the source-drain current decays monotonically to a stationary value. On the other hand, the interdot coupling equivalently divides the AB ring into two coupled subrings. That also destroys the normal AB oscillations with a period of 2pi, and generates new and complex periodic oscillations with their periods varying in a linear manner as the ratio between two magnetic fluxes (each penetrates one AB subring) increases. Furthermore, the interference between two subrings is also evident from the observation of the perturbed fundamental AB oscillation.
Resumo:
Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.
Resumo:
A Shubnikov-de Haas (SdH) oscillation measurement was performed on highly doped InAlAs/InGaAs metamorphic high-electron-mobility transistors on GaAs substrates at a temperature of 1.4 K. By analyzing the experimental data using fast Fourier transform, the electron densities and mobilities of more than one subband are obtained, and an obvious double-peak structure appears at high magnetic field in the Fourier spectrum. In comparing the results of SdH measurements, Hall measurements, and theoretical calculation, we found that this double-peak structure arises from spin splitting of the first-excited subband (i=1). Very close mobilities of 5859 and 5827 cm(2)/V s are deduced from this double-peak structure. The sum of the carrier concentration of all the subbands in the quantum well is only 3.95x10(12) cm(-2) due to incomplete transfer of the electrons from the Si delta -doped layer to the well. (C) 2001 American Institute of Physics.
Resumo:
The size and shape Evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0-ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9-ML deposition on GaAs(1 0 0) substrate. Based on comparisons with the evolution of InAs islands on single layer samples at late growth stage, the bimodal size distribution of InAs islands at 2.5-ML InAs coverage and the formation of larger InAs quantum dots at 2.9-ML deposition have been observed on the second InAs layer. The further cross-sectional transmission electron microscopy measurement indicates the larger InAs QDs: at 2.9-ML deposition on the second layer are free of dislocation. In addition, the interpretations for the size and shape evolution of InAs/GaAs QDs on the second layer will be presented. (C) 2001 Elsevier Science B.V. All lights reserved.
Resumo:
A Gunn active layer is used as an X electron probe to detect the X tunnelling current in the GaAs-AlAs heterostructure, from which a new heterostructure intervalley transferred electron (HITE) device is obtained. In the 8 mm band, the highest pulse output power of these diodes is 2.65 W and the highest conversion efficiency is 18%. The dc and rf performance of the HITE devices was simulated by the band mixing resonant tunnelling theory and Monte Carlo transport simulation. The HITE effect has transformed the transit-time dipole-layer mode in the Gunn diode into a relaxation oscillation mode in the HITE device. From the comparison of simulated results to the measured data, the HITE effect is demonstrated straightforwardly.
Resumo:
Ge/Si multilayer structures with a bimodal distribution of the island spacing in the first layer have been investigated by atomic-force microscopy and transmission electron microscopy. Besides the vertical alignment, some oblique alignments of stacked islands are observed. The presence of the elastic interaction between islands is responsible for the oblique alignment of stacked islands. (C) 2000 American Institute of Physics. [S0003-6951(00)04644-1].
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A quantum well controller (QWC) consisting of a direct-gap/indirect-gap quantum well and a doping interface is proposed to control the dynamic operation of the Gunn active layer. Through the Monte Carlo simulation a new relaxation mode for this new device is found. The oscillation and amplification behavior of the Gunn active layer under the control of the QWC is investigated theoretically and experimentally. All work demonstrates the great control capacity of the QWC and provides a new way to improve the performance of semiconductor devices. A new oscillation diode made of the QWC and a Gunn active layer has been designed and fabricated. In the 8 mm band the highest pulse output power of these diodes is 2.55 W and the highest conversion efficiency is 18%.
Resumo:
Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.
Resumo:
Evolution of the height distribution of Ge islands during in situ annealing of Ge films on Si(1 0 0) has been studied. Island height is found to have a bimodal distribution. The standard deviation of the island height divided by the mean island height, for the mode of larger island size is more than that for the other mode. We suggest that the presence of Ehrlich-Schwoebel barriers, combined with the misfit strain, can lead to the bimodal distribution of island size, the mode of larger island size having narrower base size distribution, but wider height distribution for Ge islands on Si(1 0 0). The bimodal distribution of island size could be stable due to kinetics without necessarily regarding it as minimum-energy configuration. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Within the one-dimensional tight-binding model;rnd chi-3 approximation, we have calculated four-wave-mixing (FWM) signals for a semiconductor superlattice in the presence of both static and high-frequency electric fields. When the exciton effect is negligible, the time-periodic field dynamically delocalizes the otherwise localized Wannier-Stark states, and accordingly quasienergy band structures are formed, and manifest in the FWM spectra as a series of equally separated continua. The width of each continuum is proportional to the joint width of the valence and conduction minibands and is independent of the Wannier-Stark index. The realistic homogeneous broadening blurs the continua into broad peaks, whose line shapes, far from the Lorentzian, vary with the delay time in the FWM spectra. The swinging range of the peaks is just the quasienergy bandwidth. The dynamical delocalization (DDL) also induces significant FWM signals well beyond the excitation energy window. When the Coulomb interaction is taken into account, the unequal spacing between the excitonic Wannier-Stark levels weakens the DDL effect, and the FWM spectrum is transformed into groups of discrete lines. Strikingly, the groups are evenly spaced by the ac field frequency, reflecting the characteristic of the quasienergy states. The homogeneous broadening again smears out the line structures, leading to the excitonic FWM spectra quite similar to those without the exciton effect. However, all these features predicted by the dynamical theory do not appear in a recent experiment [Phys. Rev. Lett. 79, 301 (1997)], in which, by using the static approximation the observed Wannier-Stark ladder with delay-time-dependent spacing in the FWM spectra is attributed to a temporally periodic dipole field, produced by the Bloch oscillation of electrons in real space. The contradiction between the dynamical theory and the experiments is discussed. In addition, our calculation indicates that the dynamical localization coherently enhances the time-integrated FWM signals. The feasibility of using such a technique to study the dynamical localization phenomena is shown. [S0163-1829(99)10607-6].