970 resultados para Beug_pollen-archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated magnetic properties of laterally confined structures of epitaxial Fe films on GaAs (001). Fe films with different thicknesses were grown by molecular-beam epitaxy and patterned into regular arrays of rectangles with varying aspect ratios. In-plane magnetic anisotropy was observed in all of the patterned Fe films both at 15 and 300 K. We have demonstrated that the coercive fields can be tuned by varying the aspect ratios of the structures. The magnitudes of the corresponding anisotropy constants have been determined and the shape anisotropy constant is found to be enhanced as the aspect ratio is increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional (Q1D) p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 mu m. The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, an infrared light-emitting diode is used to photodope molecular-beam-epitaxy-grown Si: Al0.3Ga0.7As, a well-known persistent photoconductor, to vary the effective electron concentration of samples in situ. Using this technique, we examine the transport properties of two samples containing different nominal doping concentrations of Si [1 x 10(19) cm(-3) for sample 1 (S1) and 9 x 10(17) cm(-3) for sample 2 (S2)] and vary the effective electron density between 10(14) and 10(18) cm(-3). The metal-insulator transition for S1 is found to occur at a critical carrier concentration of 5.7 x 10(16) cm(-3) at 350 mK. The mobilities in both samples are found to be limited by ionized impurity scattering in the temperature range probed, and are adequately described by the Brooks-Herring screening theory for higher carrier densities. The shape of the band tail of the density of states in Al0.3Ga0.7As is found electrically through transport measurements. It is determined to have a power-law dependence, with an exponent of -1.25 for S1 and -1.38 for S2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission properties of data amplitude modulation (AM) and frequency modulation (FM) in radio-over-fiber (RoF) system are studied numerically. The influences of fiber dispersion and nonlinearity on different microwave modulation schemes, including double side band (DSB), single side band (SSB) and optical carrier suppression (OCS), are investigated and compared. The power penalties at the base station (BS) and the eye opening penalties of the recovered data at the end users are both calculated and analyzed. Numerical simulation results reveal that the power penalty of FM can be drastically decreased due to the larger modulation depth it can achieve than that of AM. The local spectrum broadening around subcarrier microwave frequency of AM due to fiber nonlinearity can also be eliminated with FM. It is demonstrated for the first time that the eye openings of the FM recovered data can be controlled by its modulation depths and the coding formats. Negative voltage encoding format was used to further decrease the RF frequency thus increase the fluctuation period considering their inverse relationship.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is revealed from first-principles calculations that polarization-induced asymmetric distribution of oxygen vacancies plays an important role in the insulating behavior at p-type LaAlO3/SrTiO3 interface. The formation energy of the oxygen vacancy (V-O) is much smaller than that at the surface of the LaAlO3 overlayer, causing all the carriers to be compensated by the spontaneously formed V-O's at the interface. In contrast, at an n-type interface, the formation energy of V-O is much higher than that at the surface, and the V-O's formed at the surface enhance the carrier density at the interface. This explains the puzzling behavior of why the p-type interface is always insulating but the n-type interface can be conducting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the impact of the thickness of GaN buffer layer on the properties of distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition (MOCVD). The samples were characterized by using metallographic microscope, transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometer (XRD) and spectrophotometer. The results show that the thickness of the GaN buffer layer can significantly affect the properties of the DBR structure and there is an optimal thickness of the GaN buffer layer. This work would be helpful for the growth of high quality DBR structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N-2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

InGaN/GaN multi-quantum-well-structure laser diodes with an array structure are successfully fabricated on sapphire substrates. The laser diode consists of four emitter stripes which share common electrodes on one laser chip. An 800-mu m-long cavity is formed by cleaving the substrate along the < 1 (1) over bar 00 >. orientation using laser scriber. The threshold current and voltage of the laser array diode are 2A and 10.5 V, respectively. A light output peak power of 12W under pulsed current injection at room temperature is achieved. We simulate the electric properties of GaN based laser diode in a co-planar structure and the results show that minimizing the difference of distances between the different ridges and the n-electrode and increasing the electrical conductivity of the n-type GaN are two effective ways to improve the uniformity of carrier distribution in emitter stripes. Two pairs of emitters on a chip are arranged to be located near the two n-electrode pads on the left and right sides, and the four stripe emitters can laser together. The laser diode shows two sharp peaks of light output at 408 and 409 nm above the threshold current. The full widths at half maximum for the parallel and perpendicular far field patterns are 8 degrees and 32 degrees, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cupric iodide is a p-type semiconductor and has a large band gap. Doping of Mn, Co, and Ni are found to make gamma-CuI ferromagnetic ground state, while Cr-doped and Fe-doped CuI systems are stabilized in antiferromagnetic configurations. The origins of the magnetic ordering are demonstrated successfully by the phenomenological band coupling model based on d-d level repulsions between the dopant ions. Furthermore, using a molecular-orbital bonding model, the electronic structures of the doped CuI are well understood. According to Heisenberg model, high-T-C may be expected for CuI:Mn and CuI:Ni if there are no native defects or other impurities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We theoretically simulate and experimentally demonstrate ultra-large through-port extinctions in silicon-based asymmetrically-coupled add-drop microring resonators (MRs). Through-port responses in an add-drop MR are analyzed by simulations and large extinctions are found when the MR is near-critically coupled. Accurate fabrication techniques are applied in producing a series of 20 mu m-radii add-drop microrings with drop-side gap-widths in slight differences. A through-port extinction of about 42.7 dB is measured in an MR with through-and drop-side gap-width to be respectively 280 nm and 295 nm. The large extinction suggests about a 20.5 dB improvement from the symmetrical add-drop MR of the same size and the through-side gap-width. The experimental results are finally compared with the post-fabrication simulations, which show a gap-width tolerance of > 30 nm for the through-port extinction enhancement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A metal-encapsulating silicon fullerene, Eu@Si-20, has been predicted by density functional theory to be by far the most stable fullerene-like silicon structure. The Eu@Si-20 structure is a dodecahedron with D-2h symmetry in which the europium atom occupies the center site. The calculated results show that the europium atom has a large magnetic moment of nearly 7.0 Bohr magnetons. In addition, it was found that a stable "pearl necklace" nanowire, constructed by concatenating a series of Eu@Si-20 units, with the central europium atom, retains the high spin moment. The magnetic structure of the nanowire indicates potential applications in the fields of spintronics and high-density magnetic storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work was supported in part by the National Natural Science Foundation of China under Grant 60536010, Grant 60606019, Grant 60777029, and Grant 60820106004, and in part by the National Basic Research Program of China under Grant 2006CB604902, Grant 2006CB302806, and Grant 2006dfa11880.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface texturization is an effective way to enhance the absorption of light for optoelectronic devices but it also aggravates the surface recombination by enlarging the surface area. In order to evaluate the influence of texture structures on the surface recombination, an effective surface recombination velocity is defined which is assumed to have an equivalent recombination effect on a flat surface. Based on numerical and analytical calculation, the dependences of effective surface recombination on the pattern geometry, the surface recombination velocity, and the diffusion length are analyzed.