892 resultados para galvanneal coating thickness
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An experimental model and a mathematical model with the introduction of a ramp in the channel of Obenaus model are presented. The aim is to present a better reproduction of the real layer pollution deposited on the HV insulators. This better reproduction is obtained from two types of thickness variation: the introduction of a ramp (soft variation) and the introduction of a step (sudden variation). The computational simulations and the experimental data suggest that the introduction of the ramp is the better reproduction of the layer pollution. The ramp approximates to the real layer pollution more than the step.
Resumo:
Thin films of undoped and Sb-doped (2 atg%) SnO2 have been prepared by sol-gel dip-coating technique on borosilicate glasses. Variation of photoconductivity excitation with wavelength and optical absorption indicate indirect bandgap transition with energy of ≅ 3.5 eV. Conductance as function of temperature indicates two levels of capture with 39 and 81 meV as activation energies, which may be related to an Sb donor and oxygen vacancy respectively. Electron trapping by these levels are practically destroyed by UV photoexcitation (305 nm) and heating in vacuum to 200°C. Gas analysis using a mass spectrometer indicates an oxygen related level, which may not be desorbed in the simpler O2 form.
Resumo:
For retarding carbon oxidation in refractories during the preheating of metallurgical furnaces, a ceramic coating, made mainly of sodium phosphosilicate and clay was developed. The coating presents high adherence to the substrate with no swelling. The coating was characterized by thermal analysis, X-ray diffraction at room temperature (XRD) and at high temperature (HTXRD), X-ray fluorescence and scanning electronic microscopy (SEM). The glass transition temperature is reached at 800 °C and only glassy phase is observed above this temperature. Thus the mechanism of protection seems to be the formation of a glassy phase on the surface of the refractory, and the coating tends to be more efficient at temperatures higher than 800 °C.
Resumo:
Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.
Resumo:
Lithium niobate (LiNbO3) thin films with 1/1 stoichiometry were prepared by a spin-coating from polymeric precursor method. The films deposited on silicon (100) substrates, were thermally treated from 400° to 600°C for 3 hours in order to study the influence of thermal treatment on the crystallinity, microstructure, grain size and roughness. X-ray diffraction (XRD) results showed that LiNbO3 phase crystallizes at low temperature (400°C). It was observed by scanning electron microscopy (SEM) that it is possible to obtain dense thin films at temperatures around 500°C. The atomic force microscopy (AFM) results showed that the grain size and roughness are strongly influenced by the annealing temperature.
Resumo:
In this work we present results on the preparation of planar waveguides based on HfO2 and HfO2-SiO2. Stable sols containing europium and erbium doped HfO2 nanoparticles have been prepared and characterized. The nanosized sol was either deposited (spin-coating) on quartz substrates or embedded in (3-glycidoxipropil)trimethoxisilane (GPTS) used as a hybrid host for posterior deposition. The refractive index dispersion and luminescence characteristics were determined for the resulting HfO2 films. The optical parameters of the waveguides such as refractive index, thickness and propagation losses were measured for the hybrid composite. The planar waveguides present thickness of a few micra and support well confined propagating modes.
Resumo:
SiO2 (1-x) - TiO2 (x) waveguides, with the mole fraction x in the range 0.07 - 0.20 and thickness of about 0.4 μm, were deposited on silica substrates by a dip-coating technique. The thermal treatments at 700-900°C, used to fully densify the xerogels, produce nucleation of TiO2 nanocrystals even for the lowest TiO2 content. The nucleation of TiO2 nanocrystals and their growth by thermal annealing up to 1300°C were studied by waveguide Raman spectroscopy, for the SiO2 (0.8) - TiO2 (0.2) composition. By increasing the annealing temperature, the Raman spectrum evolves from that typical of the silica-titania glass to that of anatase, but brookite phase is dominant at intermediate temperatures. In the low. frequency region (5-50 cm-1) of the Raman spectra, acoustic vibrations of the nanocrystals are observed. From the measured line shapes, we can deduce the size distribution of the particles. The results are compared with those obtained from the line widths in the X-ray diffraction patterns. Nanocrystals with a mean size in the range 4-20 nm are obtained, by thermal annealing in a corresponding range of 800-1300°C.
Resumo:
The processing of titanium porous coatings using powder metallurgy technique to achieve a porous structure that allows osseointegration with bone tissue was discussed. The porous microstructure exhibited micropores and interconnected macropores with size ranges that allowed bone ingrowth. The macropores in the coatings were originated from the binder evaporation while the micropore was related with the porous titanium powder and the low compaction pressure used. The in vivo evaluation indicated that osseointegration had occurred between the bone and porous material.
Resumo:
A brief overview of optical monitoring for vacuum and wet bench film deposition processes is presented. Interferometric and polarimetric measurements are combined with regard to simultaneous real-time monitoring of refractive index and physical thickness. Monitor stability and accuracy are verified with transparent oil standards. This double optical technique is applied to dip coating with a multi-component Zirconyl Chloride aqueous solution, whose time varying refractive index and physical thickness curves indicate significant sensitivity to changes of film flow properties during the process.
Resumo:
Purpose: Fiber-reinforced composite (FRC) posts can be air-abraded to obtain good attachment to the resin cement. This study tested the effect of silica coating on the flexural strength of carbon, opaque, and translucent quartz FRC posts. Materials and Methods: Six experimental groups of FRC posts (n = 10 per group) were tested, either as received from the manufacturer or after chairside silica coating (30-μm CoJet-Sand). Results: There was no significant difference in the flexural strength of nonconditioned (504 to 525 MPa) and silica-coated (514 to 565 MPa) specimens (P > .05) (analysis of variance). The type of post did have a significant effect on flexural strength (P < .05). Conclusion: Chairside silica coating did not affect the flexural strength of both carbon and quartz FRC posts.
Resumo:
A comparative study was accomplished between two immobilization methodologies for the meldola's blue (MB), used to decrease the oxidation potential of NADH. The study was performed with glassy carbon electrode by electropolymerization of pyrrole and MB through the technique of cyclic voltammetry being evaluated the effect of the number of cycles to define the thickness and the stability of the film. With 25 cycles it was obtained the best result. They were also investigated the modification of the graphite electrode with film formed by the system sol-gel PPO 300 or PPO 4000 for the dip-coating, through two methods: occlusion and adsorption. The best method was it of adsorption of MB during 10 min, following by deposit of the film PPO 300, favored for the time of drying (24 hours). The adsorption of MB followed by PPO 300 deposition presented broader linear range than PPy methodology. ©2006 Sociedade Brasileira de Química.
Resumo:
This study aimed to evaluate the influence of cement thickness on the bond strength of a fiber-reinforced composite (FRC) post system to the root dentin. Eighteen single-rooted human teeth were decoronated (length: 16 mm), the canals were prepared, and the specimens were randomly allocated to 2 groups (n = 9): group 1 (low cement thickness), in which size 3 FRC posts were cemented using adhesive plus resin cement; and group 2 (high cement thickness), in which size 1 FRC posts were cemented as in group 1. Specimens were sectioned, producing 5 samples (thickness: 1.5 mm). For cement thickness evaluation, photographs of the samples were taken using an optical microscope, and the images were analyzed. Each sample was tested in push-out, and data were statistically analyzed. Bond strengths of groups 1 and 2 did not show significant differences (P = .558), but the cement thicknesses for these groups were significantly different (P < .0001). The increase in cement thickness did not significantly affect the bond strength (r2 = 0.1389, P = .936). Increased cement thickness surrounding the FRC post did not impair the bond strength.
Resumo:
Nowadays, many investments have been made in the area of superconductor materials, with the aim to improve their potential technological applications. Applications on the energy transport using cables, to get high resolution images in the medicine use high magnetic fields, high speed signals use superconductor devices all of them are in crescent evidence and they are showing that the future is coming and next for this new kind of materials. Obviously that everything of this is possible due to the increasing of research with new materials, where the synthesis, characterization and applications are of the mainly objective of these researches. The production of cable for the energy transport has been in advanced stage as the bulks production is too. However, the film production that to aim at the electronic devices area is not as developed or it still need expensive investments. Thinking about that, we are developing a research where we may increase the relation of cost/benefits. Thereby, we are applying the polymeric precursors method to obtain films that will be used in the built of electronic devices. Thin films (mono and multilayers, on crystalline or metallic substrates, controlled thickness) of the BSCCO system have been obtained from dip coating deposition process with excellent results in terms of preferential orientation, controlled thickness, a large area, which may indicate future applications. Based on these results, we present an electrical circuit and their principal characteristics as superconductor transition (85K), transport current density and structure. DC four probes method, scanning electron microscopy, digital optical microscopy and X-ray diffractometry were some techniques used for the characterization of this superconductor electric device. © 2006 Materials Research Society.