892 resultados para deportes de equipo
Resumo:
p.51-56
Resumo:
p.99-104
Resumo:
p.177-181
Resumo:
p.19-25
Resumo:
En este trabajo utilizamos los razonamientos que llevan a cabo doce alumnos de Secundaria durante la resolución de una tarea matemática para detectar los errores en que incurren y las dificultades que encuentran en su ejecución. Se les propone la tarea en un contexto de entrevista semiestructurada en la que se guía a los alumnos por el camino a seguir. Entre los datos que se obtienen, se encuentran los errores aparecidos en el desarrollo de la tarea. El análisis de dichos errores se ha hecho siguiendo las clasificaciones de Evans (González, 1998) y Radatz (1979), y se conecta dichos errores con dificultades específicas siguiendo la clasificación de Socas (1997). Se concluye este trabajo con algunas reflexiones que conside-ramos interesantes para profesionales de la enseñanza de las matemáticas.
Resumo:
En esta comunicación ponemos de manifiesto la importancia del estudio de los poliedros en la Enseñanza Secundaria y su utilidad para el desarrollo y la comunicación de ideas matemáticas. Con esta intención planteamos una serie de tareas que permiten al profesor y al alumno trabajar los poliedros potenciando el lenguaje en el aula de matemáticas y las capacidades espaciales del alumno. Las tareas aquí presentadas fueron realizadas en unas Jornadas de Investigación en el aula de matemáticas organizadas por la Sociedad de Profesores de Matemáticas THALES en Granada con la participación de profesores de distintos niveles educativos.
Resumo:
En este trabajo se parte de la perspectiva constructivista de la enseñanza y aprendizaje de las matemáticas y se considera la resolución de problemas como una actividad interesante y formativa. Se presenta el problema del tablero de ajedrez y distintos itinerarios para su trabajo, siguiendo las fases de Polya (1982) para la resolución de problemas. Finalmente se presentan algunas reflexiones sobre la resolución del problema, sobre el análisis de esta resolución y sobre la utilidad y conveniencia de este tipo de análisis para el proceso de enseñanza y aprendizaje de las matemáticas.
Resumo:
Argumentamos sobre el uso de la papiroflexia como recurso didáctico en el aula de matemáticas. A través de diversas investigaciones sobre las características que un buen material didáctico debe tener se avala la importancia de la papiroflexia en la enseñanza y aprendizaje de las matemáticas. Proporcionamos unas sugerencias didácticas, que invitan a la reflexión sobre el papel de la geometría dentro del currículo. Por último, consideramos el valor de la papiroflexia como estímulo de distintas facultades intelectuales y físicas.
Resumo:
Se presenta una propuesta, para un taller de dos sesiones, sobre el trabajo en equipo como una opción para el aprendizaje en el aula de matemáticas, la cual complementa y apoya los planteamientos hechos en los lineamientos curriculares, particularmente los que se refieren a los procesos generales como: razonamiento, resolución y planteamiento de problemas; comunicación; modelación; y elaboración, comparación y ejercitación de procedimientos. La cual esta basada en el fascículo Resolución de problemas y aprendizaje en equipos: una perspectiva desde la Educación Matemática, preparado para el diplomado que la fundación Fedespegue ofrecerá a los profesores interesados en el trabajo en equipo, para el 2008.
Resumo:
En muchos colegios las reuniones de área son el único espacio programado por la institución para la interacción entre profesores del área. El Colegio Santafé de Bogotá es un ejemplo de ellos. En éste, las reuniones de área tenían un carácter eminentemente informativo, situación que parecía ser la causa de que el grupo de profesores de matemáticas no estuviera suficientemente cohesionado para el trabajo y de que en las reuniones de área no se trataran temas relacionados con asuntos propios de la enseñanza de las matemáticas. Con la consciencia de que lograr el consenso del equipo de profesores en cuanto a aspectos fundamentales para la formación matemática, es el primer paso de un proceso de largo plazo para mejorar la enseñanza de las matemáticas, se realizaron acciones tendientes a iniciar ese proceso y a promover el tratamiento de temas propios de la educación matemática entre los profesores. La experiencia que se narra en este artículo da cuenta de lo que sucedió en tres reuniones de área: la primera, de motivación; la segunda, de indagación y consenso; y la última, de lectura, debate y reflexión. Entre los resultados obtenidos con las acciones implementadas vale la pena destacar que se logró dentro del grupo de profesores explicitar inquietudes u opiniones en cuanto al quehacer matemático y unificar criterios en lo referente a la formación de aspectos relevantes de la matemática. Por otro lado, el trabajo mismo de investigación deja en quien lo realiza una lección sobre el continuo cuestionamiento y reflexión que se debe hacer sobre la propia práctica.
Resumo:
Se presenta una propuesta desarrollada en el Departamento del Magdalena, Distrito Cultural e Histórico de Santa Marta. A finales del año 2002 se hizo un análisis de los bajos resultados presentados por los estudiantes de grado Once en las diferentes pruebas aplicadas por el ICFES, específicamente en el área de Matemática durante los años 2001 y 2002. A partir de estos resultados se organizó un equipo de trabajo donde se asumió que la evaluación es un proceso continuo e integral en la enseñanza de la matemática que no solo basta dar información a diario, sino conocer realmente si los estudiantes están aprendiendo, si verdaderamente los alumnos son competentes a la hora de evaluarlos y además si se cumplen los estándares mínimos exigidos por MEN. Para lograr tal fin se diseño un plan estratégico a mediano plazo que ayuda a fortalecer los niveles de desempeño en el desarrollo de sus competencias tanto integrales ((interpretativa, argumentativa, propositiva) como básicas (la comunicación, el razonamiento y la solución de problemas), obteniéndose a partir del año 2006 resultados satisfactorios en el área.
Resumo:
Las ideas que aquí se presentan son un resumen e interpretación de las publicadas en el capítulo Mathematics Literacy, incluido en el documento editado en 2003 por la OCDE The PISA 2003 Assessment Framework y aparecen en el documento Aproximación a un modelo de evaluación: el proyecto PISA 2000, que ha sido publicado por el Ministerio de Educación, Cultura y Deportes.
Resumo:
En este trabajo se pretende evidenciar, mediante experiencias de aula, que la estrategia metodológica de Resolución de Problemas planteadas por Pólya (1965), Shoenfeld (1985) y Brousseau (1986), desarrolla competencias básicas, genéricas y específicas. Los resultados muestran que las actividades de resolución de problemas planteadas promovieron la comprensión lectora, el trabajo en equipo, la capacidad de razonamiento y argumentación frente a sus compañeros/as, la capacidad lógica de reconocimiento, el descubrimiento de patrones, exploración de problemas similares, reformulación de problemas, trabajo hacia atrás, la participación activa de los estudiantes y el desarrollo de líderes (Espinoza, et al., 2008)
Resumo:
Se analiza la importancia de la inclusión del tema de sucesiones desde preescolar hasta el nivel medio superior en México. El marco teórico que da soporte a esta investigación es la Teoría de Representaciones Semióticas de Duval (1998), en combinación con el uso de tecnología TI-Nspire. Centramos la atención en el nivel medio superior, con la finalidad de que los alumnos a través del manejo de las representaciones semióticas: verbal, gráfica, tabular y analítica, adquieran el concepto de sucesión aún sin definirlo formalmente. A través del uso de representaciones semióticas instrumentadas en la calculadora TINSpire con ejemplos acordes al entorno del alumno (deportes, medio ambiente) se forma el concepto de sucesión. Paralelamente se insiste en la detección tanto del dominio, imagen y grafo; lo anterior con la finalidad de que el alumno visualice y detecte que el dominio de las funciones en juego siempre es el conjunto de los números naturales y la imagen un subconjunto de los números reales, así como de la relación funcional.
Resumo:
En esta investigación, en proceso, pretendemos el diseño, desarrollo y evaluación de Objetos de Aprendizaje (OA) lo que permitirá probar y validar una metodología de diseño y producción de OA al interior de la institución, así como la utilización de la Web como medio de interacción y cooperación entre individuos en los procesos educativos. La producción de OA con esta metodología se plantea bajo un equipo de trabajo que analiza las necesidades del grupo destinatario, los contenidos, los recursos tecnológicos, los procesos de evaluación, entre otros, para la producción de cada OA.