942 resultados para comunicación educativa
Resumo:
Este curso presenta un avance en la construcción de escenarios educativos para el aprendizaje de las matemáticas desde el cual se ofrece posibilidades a los estudiantes para encontrar las razones del por qué y para qué del propósito del proceso educativo. Los escenarios de aprendizaje construidos son las relaciones entre espacialidad, identidad y territorialidad, y la cual integra como eje temático contenidos de áreas curriculares como ciencias naturales, educación física, matemáticas, ciencias sociales y lenguaje. Esta relación permite identificar problemas que tienen contenidos importantes desde una perspectiva del aprendizaje, de la importancia sociológica de aprender en la escuela y de la posición misma de los niños.
Resumo:
Este articulo reporta el trabajo de estudiantes de noveno a undécimo grado en la solución de un problema de optimización, en donde el modelado juega un papel principal puesto que les permitió llegar a conclusiones y generalizaciones que no fueron posibles a través del lápiz y el papel. Se comentan las estrategias y procedimientos que siguieron los estudiantes y se destaca la importancia de la mediación instrumental a través de la modelación en el proceso de verificación de la solución del problema.
Resumo:
Tradicionalmente la geometría desde la escuela se ha enseñado desde un mismo sentido: lo bidimensional, sin considerar que las representaciones bidimensionales se hacen precisamente de objetos tridimensionales del mundo físico. Actualmente y según los lineamientos curriculares de matemáticas para una mejor percepción del espacio se requiere que el estudiante comunique y represente el espacio bidimensional a través de experiencias significativas con lo tridimensional, esta relación entre el espacio tridimensional con el plano puede desarrollarse a partir de la construcción de poliedros debido a que con estos se puede propiciar tres tipos de procesos cognitivos importantes para el desarrollo del pensamiento espacial: los procesos de visualización, los procesos de construcción y los procesos de razonamiento.
Resumo:
Con el presente proyecto de investigación se pretenden proponer algunas estrategias didácticas en la perspectiva de potenciar el pensamiento variacional en estudiantes de octavo y Noveno grados, de Educación Básica, a través de situaciones problemas. El estudio se realiza en tres Instituciones Educativas de carácter Público, del municipio de Sincelejo, Colombia. Se emplea un diseño cualitativo que se aproxima a la investigación-acción. Este estudio es realizado por el grupo de investigación “Pensamiento Matemático” (PEMA), con el auspicio de la Universidad de Sucre de Sincelejo, Colombia.
Resumo:
En este taller (de una sesión) se proponen ciertas actividades que conectan el algebra con diversas situaciones del mundo real. La idea es hacer que los presentes desarrollen las tareas para que conozcan otras alternativas para construir conceptos como tasa de cambio o pendiente, modelamiento de datos, líneas de mejor ajuste, datos atípicos, errores en experimentos, bases de ingenierías civil, uso de modelos matemáticos para hacer predicciones y cuando los modelos matemáticos no describen la realidad de los experimentos. En el taller se realizaran tres actividades: A. FORTALEZA DE LAS VIGAS B. ATANDO NUDOS C. CONSTRUCCION DEL TRIACONTRAEDRO ROMBICO (LAMPARA DANESA) El realizar estas experiencias nos ayudaran a entender los estados de conflicto que entra el estudiante a la hora de procesar, adquirir y afianzar el conocimiento
Resumo:
ORIGEN A LA PROPUESTA La experiencia tiene como origen el curso “Mejoramiento del Sistema de Capacitación de Maestros de Matemáticas y Ciencias” otorgado a través del convenio Ministerio de Educación Nacional -MEN – y la Agencia de Cooperación Internacional de Japón –JICA. El curso en mención se desarrolló entre el 17 / 10/ 05 al / en la Universidad Pedagógica de Miyagi - Sendai
Resumo:
La propuesta que hoy presentamos, es el resultado de varios años de implementación del proyecto liderado por el Ministerio de Educación, las Universidades y algunas Secretarías de Educación, conocido como Incorporación de Nuevas Tecnologías al Currículo de las Matemáticas de la Educación Básica y Media de Colombia con la mediación de los Software Interactivos como Cabri y los accesorios externos como sensores para toma de datos. Al definir el objeto de las matemáticas, encontramos que su aprendizaje no sólo se basa en formar el espíritu lógico, sino también proporcionar herramientas para la solución de problemas reales. Por lo tanto, se debe combinar el rigor lógico con la funcionalidad, puesto que además de la lógica formal las matemáticas proporcionan también un poderoso conjunto de herramientas que posibilitan describir, explicar, predecir y modelar situaciones no sólo del mundo científico, sino también de la vida cotidiana (significación). Es por esto, que juega un papel importante implementar en su didáctica, el referirla al mundo de la naturaleza, de las otras ciencias (interdisciplinariedad), y de la cotidianidad del hombre. Es fácil ver los nexos que tienen las Ciencias Naturales con el mundo extraescolar, lo que permite construir el conocimiento a partir de proyectos en donde se manipule en forma directa el mundo real. Las temáticas que se trabajan en esta propuesta además de permitir lo anterior, proporcionan el estudio formal de las matemáticas y el desarrollo de sus diferentes pensamientos. Los ejes temáticos trabajados son: Cinemática, Luz, Electricidad, Calor y Energía y propiedades químicas de las sustancias, entre otras.
Resumo:
Se trata de un estudio realizado alrededor de estrategias didácticas que surgen a partir del triángulo equilátero y sus propiedades. Este ha involucrado a estudiantes de licenciatura en Matemáticas de la Universidad de Cundinamarca y a maestros en formación de la Normal Superior de Pasca. A partir de este se propone una unidad didáctica con algunas actividades diseñadas para ser abordadas con Cabri Géomètre y que están dirigidas a estudiantes de grado séptimo de educación básica secundaria. El fundamento de este trabajo es proponer el desarrollo de temáticas a partir de proyectos de Aula y no simplemente desde la información de contenidos teóricos. Finalmente lo que se hace de manera práctica perdura más en el recuerdo de los estudiantes.
Resumo:
Se presenta una propuesta, para un taller de dos sesiones, sobre el trabajo en equipo como una opción para el aprendizaje en el aula de matemáticas, la cual complementa y apoya los planteamientos hechos en los lineamientos curriculares, particularmente los que se refieren a los procesos generales como: razonamiento, resolución y planteamiento de problemas; comunicación; modelación; y elaboración, comparación y ejercitación de procedimientos. La cual esta basada en el fascículo Resolución de problemas y aprendizaje en equipos: una perspectiva desde la Educación Matemática, preparado para el diplomado que la fundación Fedespegue ofrecerá a los profesores interesados en el trabajo en equipo, para el 2008.
Resumo:
En este trabajo, los autores se cuestionan el surgimiento de una conjetura en la resolución de un problema en el contexto del pensamiento matemático avanzado, en una comunidad de práctica de estudiantes para profesor de matemáticas. Mediante una investigación de diseño, se logró concluir que las refutaciones e interacciones que se dan de forma individual y dentro de las comunidades de aprendizaje, permiten que las intuiciones se movilicen, estableciendo un lenguaje común y una empresa compartida (Wegner, 2001), en la resolución de problemas.
Resumo:
En este trabajo presentamos el análisis de algunas tareas propuestas a estudiantes de grado 11 en torno a la noción de tasa media de variación y tasa instantánea de variación. La propuesta se diseño utilizando como metodología de investigación el aporte de la escuela francesa en torno a las situaciones didácticas de Brousseau y la ingeniería didáctica. Para el análisis de las tareas se utilizaron las unidades de análisis propuestas por Romero (1998) y Camargo (2001); estudio del contenido, estudio de la comprensión y análisis de la interacción didáctica.
Resumo:
Teniendo en cuenta que la educación tradicional es vista como un modelo pedagógico que entre otras: i) se enfoca en desarrollar en los estudiantes conocimientos algorítmicos, ii) hace un énfasis en la ejercitación de procedimientos, iii) no tiene en cuenta el desarrollo social del individuo dentro de una comunidad y tampoco se enfoca en el proceso que tiene un estudiante al desarrollar una actividad con determinado objeto matemático; hoy en día se propende por buscar perspectivas que le permitan a los estudiantes encontrarle sentido a las actividades que el profesor lleva al aula. A la luz de lo anterior, en Colombia han surgido diversas tendencias que han buscado la renovación pedagógica, didáctica y conceptual en la educación escolar, enmarcadas –la mayoría de estas propuestas– dentro de la idea de que los estudiantes se relacionen directamente con el conocimiento, mientras que el profesor toma una postura de orientador del proceso de aprendizaje del estudiante. Teniendo en cuenta lo anterior, muchos profesores han buscado cambiar sus prácticas tradicionales de enseñanza, un ejemplo de ello lo encontramos en el colectivo de profesores de la Institución Educativa Distrital Colegio Paulo Freire de la localidad de Usme (Bogotá, Colombia); donde los profesores –en concordancia con las ideas del pedagogo Paulo Freire– comparten, como parte de su proyecto educativo, el hecho de ver a la enseñanza como un proceso que debe generar en los estudiantes una comprensión crítica de la realidad social, política y económica en la que él está inmerso.
Resumo:
En el presente trabajo nos interesa principalmente determinar qué concepciones sobre el infinito han desarrollado estudiantes de último año de secundaria y estudiantes universitarios de primer año. Aunque este concepto no aparece como un contenido específico del currículo de matemáticas, sobre él se desarrollan diferentes concepciones en escenarios no escolares que de una u otra manera afectan la construcción de conceptos matemáticos relacionados con él. Además, nos interesa confrontar las ideas que surgen cuando se habla de infinito en lo grande e infinito en lo pequeño, ya que aunque se trata de la construcción de un mismo concepto sus concepciones emergen de manera diferente en la mente de los individuos (Núñez, 1997). Lo que se puede justificar considerando que es más fácil comprender el infinito en lo grande como un proceso que continua sin parar y que no tiene fin, que el infinito en lo pequeño, en donde a pesar de conservarse el hecho de un proceso sin fin, aparece una nueva situación que sugiere que dicho proceso tiene un límite.
Resumo:
La investigación educativa nos proporciona conocimiento basado científicamente acerca del proceso de aprendizaje por parte de los estudiantes, así como de las dificultades y errores más comunes entre ellos. Sin embargo, este conocimiento no siempre se pone a disposición de los profesores directamente implicados en la enseñanza en las aulas, de manera que no se aplica ni se aprovecha debidamente. En este trabajo, pretendemos ofrecer a los profesores algunos resultados obtenidos de la investigación en el campo de la didáctica de la estadística, con el fin de contribuir a facilitar y mejorar su práctica docente. Si bien los resultados que se presentan se han obtenido en el contexto español, los hallazgos son lo suficientemente generales como para que puedan ser utilizados por profesores de otros contextos.
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.