903 resultados para Total-energy calculations
Resumo:
We show the feasibility of using quantum Monte Carlo (QMC) to compute benchmark energies for configuration samples of thermal-equilibrium water clusters and the bulk liquid containing up to 64 molecules. Evidence that the accuracy of these benchmarks approaches that of basis-set converged coupled-cluster calculations is noted. We illustrate the usefulness of the benchmarks by using them to analyze the errors of the popular BLYP approximation of density functional theory (DFT). The results indicate the possibility of using QMC as a routine tool for analyzing DFT errors for non-covalent bonding in many types of condensed-phase molecular system.
Resumo:
It is well known that the power absorbed by a linear oscillator when excited by white noise base acceleration depends only on the mass of the oscillator and the spectral density of the base motion. This places an upper bound on the energy that can be harvested from a linear oscillator under broadband excitation, regardless of the stiffness of the system or the damping factor. It is shown here that the same result applies to any multi-degree-of-freedom nonlinear system that is subjected to white noise base acceleration: for a given spectral density of base motion the total power absorbed is proportional to the total mass of the system. The only restriction to this result is that the internal forces are assumed to be a function of the instantaneous value of the state vector. The result is derived analytically by several different approaches, and numerical results are presented for an example two-degree-of-freedom-system with various combinations of linear and nonlinear damping and stiffness. © 2013 The Author.
Resumo:
This work analysed the cost-effectiveness of avoiding carbon dioxide (CO2) emissions using advanced internal combustion engines, hybrids, plug-in hybrids, fuel cell vehicles and electric vehicles across the nine UK passenger vehicles segments. Across all vehicle types and powertrain groups, minimum installed motive power was dependent most on the time to accelerate from zero to 96.6km/h (60mph). Hybridising the powertrain reduced the difference in energy use between vehicles with slow (t z - 60 > 8 s) and fast acceleration (t z - 60 < 8 s) times. The cost premium associated with advanced powertrains was dependent most on the powertrain chosen, rather than the performance required. Improving non-powertrain components reduced vehicle road load and allowed total motive capacity to decrease by 17%, energy use by 11%, manufacturing cost premiums by 13% and CO2 emissions abatement costs by 15%. All vehicles with advanced internal combustion engines, most hybrid and plug-in hybrid powertrains reduced net CO2 emissions and had lower lifetime operating costs than the respective segment reference vehicle. Most powertrains using fuel cells and all electric vehicles had positive CO2 emissions abatement costs. However, only vehicles using advanced internal combustion engines and parallel hybrid vehicles may be attractive to consumers by the fuel savings offsetting increases in vehicle cost within two years. This work demonstrates that fuel savings are possible relative to today's fleet, but indicates that the most cost-effective way of reducing fuel consumption and CO2 emissions is by advanced combustion technologies and hybridisation with a parallel topology. © 2014 Elsevier Ltd.
Resumo:
Triplicate groups of gibel carp Carassius auratus gibelio Bloch (initial body weight: 4.89 g) were fed for 8 weeks at 24.8-30.8 degrees C with nine isonitrogenous and isoenergetic diets. The control diet (F1) used white fishmeal (FM) as the sole protein source. In the other eight diets (F2-F9), 40.5-100% of FM protein was substituted by poultry by-product meal (PBM) at 8.5% increments. The specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio, protein retention efficiency and energy retention rate for fish fed PBM diets (F2-F9) were all higher, but not always significantly, than those for fish fed F1. All apparent digestibility coefficients for fish fed PBM diets were lower than those for fish fed F1. Fish fed F1 had a significantly higher hepatosomatic index value than fish fed PBM diets (P < 0.05). No significant (P > 0.05) effect of diet was found in whole-body moisture and fat content. Whole-body protein and energy content for fish fed PBM diets were slightly higher than that for fish fed F1. The optimal replacement level of FM by PBM was estimated by second-order polynomial regression to be 66.5% in protein.
EFFECT OF RATION SIZE ON THE GROWTH AND ENERGY BUDGET OF THE GRASS CARP, CTENOPHARYNGODON-IDELLA VAL
Resumo:
Young grass carp (12-13 g) were kept at five ration levels ranging from starvation to ad libitum feeding at 30-degrees-C. They were fed duckweed. Food consumption, absorption efficiency and growth were determined directly, and metabolism and nitrogenous excretion calculated indirectly from energy and nitrogen budgets, respectively. The relationship between specific growth rate and ration size was linear. Absorption efficiency for energy was not affected by ration size and averaged 50.6 +/- 0.57% (mean +/- s.e.). Depending on ration size, energy lost in excretion accounted for 4.5-5.9% of the food energy, energy channelled to metabolism accounted for 34.4-48.3% of the food energy, and energy retained as growth accounted for 6.7-11.9% of the food energy. Regardless of ration, a constant proportion of food energy (30.7%) was accounted for by feeding metabolism (total metabolism minus fasting metabolism). The energy budget at the maximum ration was: 100 C = 49.1F + 4.5U + 3.6R(fa) + 30.9R(fe) + 11.9G, where C, F, U, R(fa), R(fe) and G represent food consumption, faecal production, excretion, fasting metabolism, feeding metabolism and growth, respectively.
Resumo:
Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N-2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.
Resumo:
We investigate the couplings between different energy band valleys in a metal-oxide-semiconductor field-effect transistor (MOSFET) device using self-consistent calculations of million-atom Schrodinger-Poisson equations. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. The MOSFET device is under nonequilibrium condition with a source-drain bias up to 2 V and a gate potential close to the threshold potential. We find that all the intervalley couplings are small, with the coupling constants less than 3 meV. As a result, the system eigenstates derived from different bulk valleys can be calculated separately. This will significantly reduce the simulation time because the diagonalization of the Hamiltonian matrix scales as the third power of the total number of basis functions. (C) 2008 American Institute of Physics.
Resumo:
The binding energy of an exciton bound to a neutral donor (D-0,X) in GaAs quantum-well wires is calculated variationally as a function of the wire width for different positions of the impurity inside the wire by using a two-parameter wavefunction. There is no artificial parameter added in our calculation. The results we have obtained show that the binding energies are closely correlated to the sizes of the wire, the impurity position, and also that their magnitudes are greater than those in the two-dimensional quantum wells compared. In addition, we also calculate the average interparticle distance as a function of the wire width. The results are discussed in detail.
Resumo:
The Hamiltonian of the wurtzite quantum dots in the presence of an external homogeneous magnetic field is given. The electronic structure and optical properties are studied in the framework of effective-mass envelope function theory. The energy levels have new characteristics, such as parabolic property, antisymmtric splitting, and so on, different from the Zeeman splitting. With the crystal field splitting energy Delta(c)=25 meV, the dark excitons appear when the radius is smaller than 25.85 A in the absence of external magnetic field. This result is more consistent with the experimental results reported by Efros [Phys. Rev. B 54, 4843 (1996)]. It is found that dark excitons become bright under appropriate magnetic field depending on the radius of dots. The circular polarization factors of the optical transitions of randomly oriented dots are zero in the absence of external magnetic field and increase with the increase of magnetic field, in agreement with the experimental results. The circular polarization factors of single dots change from nearly 0 to about 1 as the orientation of the magnetic field changes from the x axis of the crystal structure to the z axis, which can be used to determine the orientation of the z axis of the crystal structure of individual dots. The antisymmetric Hamiltonian is very important to the effects of magnetic field on the circular polarization of the optical transition of quantum dots.
Resumo:
The subbands of the ground state E-c1, the first excited state E-c2 and heavy hole state E-HH1 are calculated by solving the eigenvalues of effective-mass Hamiltonian H-0 which is derived from eight-band k . p theory and the calculations are performed at k(x) = k, = k = 0 for the three-dimensional array of InGaAs/GaAs quantum dots (QDs). With indium content in InGaAs QDs gradually increasing from 30% to 100%,the intersubband transition wavelength of E-c2 to E-c1, blue-shifts from 18.50 to 11.87 mu m,while the transition wavelength of E-c1, to E-HH1, red-shifts from 1. 04 to 1. 73 mu m. With the sizes of Ir-0.5 Ga-0.5 As and InAs QDs increasing from 1.0 to 5.0 nm, the intersubband transition from E-c1, to E-C2 transforms from bound-state-to-continuum-state to bound-state-to-bound-state, and the corresponding intersubband transition wavelengths red-shift from 8.12 pm (5.90 pm) to 53.47 mu m (31.87 pm), respectively, and the transition wavelengths of E-C1 to E-HH1 red-shift from 1. 13 mu m (1.60 mu m) to 1.27 mu m (2.01 mu m), respectively.
Resumo:
We calculate the binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot (QD) in the framework of effective-mass envelope-function theory using the plane wave basis. The variation of the binding energy with edge length, position of the impurity, and external electric field is studied in detail. A finite potential model is adopted in our calculations. Compared with the infinite potential model [C. I. Mendoza , Phys. Rev. B 71, 075330 (2005)], the following results are found: (1) if the impurity is located in the interior of the QD, our results give a smaller binding energy than the infinite potential model; (2) the binding energies are more sensitively dependent on the applied electric field in the finite potential model; (3) the infinite potential model cannot give correct results for a small QD edge length for any location of the impurity in the QD; (4) some degeneracy is lifted when the dot is no longer cubic. (C) 2007 American Institute of Physics.
Resumo:
The effects of the geometrical shape on two electrons confined in a two-dimensional parabolic quantum dot and subjected to an external uniform magnetic field have been calculated using a variational-perturbation method based on a direct construction of trial wave functions. The calculations show that both the energy levels and the spin transition of two electrons in elliptical quantum dots are dramatically influenced by the shape of the dots. The ground states with total spin S=0 and S=1 are affected greatly by changing the magnetic field and the geometrical confinement. The quantum behavior of elliptical quantum dots show some relation to that of laterally coupled quantum dots. For a special geometric configuration of the confinement omega(y)/omega(x)=2.0, we encounter a characteristic magnetic field at which spin singlet-triplet crossover occurs. (c) 2007 American Institute of Physics.
Resumo:
We present a new way to meet the amount of strain relaxation in an InGaN quantum well layer grown on relaxed GaN by calculating and measuring its internal field. With perturbation theory, we also calculate the transition energy of InGaN/GaN SQWs as affected by internal fields. The newly reported experimental data by Graham et al. fit our calculations well on the assumption that the InGaN well layer suffered a 20% strain relaxation, we discuss the differences between our calculated results and the experimental data. Our calculation suggests that with the increase of indium mole fraction in the InGaN/GaN quantum well, the effect of polarization fields on the luminescence of the quantum well will increase. Moreover, our calculation also suggests that an increase in the quantum well width by only one monolayer can result in a large reduction in the transition energy. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The intensity of the N K edge in electron energy-loss spectra from a GaN thin film shows a pronounced difference when the orientation of the film approaches the (0002) and (000-2) Bragg reflections, along the polar direction. This experimental result can be interpreted by the effect associated with interference between the Bloch waves of the incident electron in the GaN crystal. The theoretical calculations indicate that, at the Bragg condition of g=0002 along the Ga-N bond direction, the thickness-averaged electron current density on the N atom plane is much higher than that at g=000 (2) over bar, with a maximum as the specimen thickness is about 0.4xi(0002) (the two-beam extinction distance). The delocalization effect on the experimental spectra is also discussed. (C) 2002 American Institute of Physics.
Resumo:
Using a two-parameter wave function, we calculate variationally the binding energy of an exciton bound to an ionized donor impurity (D+,X) in GaAs-AlxGa1-xAs quantum wells for the values of the well width from 10 to 300 Angstrom, when the dopant is located in the center of the well and at the edge of the well. The theoretical results confirm that the previous experimental speculation proposed by Reynolds tit al. [Phys. Rev. B 40, 6210 (1989)] is the binding energy of D+,X for the dopant at the edge of the well. in addition, we also calculate the center-of-mass wave function of the exciton and the average interparticle distances. The results are discussed in detail.