934 resultados para Confocal Laser Scanning Microscopy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Nemertodermatida are a small group of microscopic marine worms. Recent molecular studies have demonstrated that they are likely to be the earliest extant bilaterian animals. What was the nervous system (NS) of a bilaterian ancestor like? In order to answer that question, the NS of Nemertoderma westbladi was investigated by means of indirect immunofluorescence technique and confocal scanning laser microscopy. The antibodies to a flatworm neuropeptide GYIRFamide were used in combination with anti-serotonin antibodies and phalloidin-TRITC staining. The immunostaining revealed an entirely basiepidermal NS. A ring lying outside the body wall musculature at the level of the statocyst forms the only centralisation, the

Relevância:

40.00% 40.00%

Publicador:

Resumo:

According to recent molecular studies, the Acoela are the earliest extant bilaterian group. Their nervous system displays a striking variety of patterns. The aim of the present investigation was to study the variability of the nervous system in a monophyletic group of the Acoela. Six species of Paraphanostoma were chosen for the study. Using immunocytochemical methods and confocal scanning laser microscopy, the immunoreactive patterns of serotonin (5-HT) and the neuropeptide GYIRFamide were described in detail. The study has demonstrated that the brains in Paraphanostoma species, although diverse in detail, still follow the same general pattern. 18S rDNA sequences were used to generate a hypothesis of the phylogeny within the group. Characters of the nervous system revealed in this study were coded and analysed together with 18S rDNA data. Several synapomorphies in the nervous system characters were identified. However, numerous parallelisms in the nervous system evolution have occurred. Data obtained demonstrate that the genus Paraphanostoma is closely related to Childia and should belong to the same family, Childiidae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diplozoidae monogeneans are fish-gill ectoparasites comprising 2 individuals fused in so-called permanent copula. This unique situation occurs when 2 larvae (diporpae) make contact on the host gill, such that their union triggers maturation into an individual adult worm. The present study examined paired stages of Eudiplozoon nipponicum microscopically to ascertain whether somatic fusion involves neural connectivity between these 2 heterogenic larvae. Neuronal pathways were demonstrated in whole-mount preparations of the worm, using indirect immunocytochemical techniques interfaced with confocal scanning laser microscopy for peptidergic and serotoninergic innervations and enzyme cytochemical methodology and light microscopy for cholinergic components. Elements of the central nervous systems of paired worms are connected by commissures the region of fusion so that the 2 systems are in structural continuity. Interindividual connections were most apparent between corresponding ventral nerve cords. All 3 classes of neuronal mediators were identified throughout both central and peripheral connections of the 2 nervous systems. The anatomical complexity and apparent plasticity of the diplozoon nervous system suggest that it has a pivotal role not only in motility, feeding, and reproductive behaviors but also in the events of larval pairing and somatic fusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic and bonding properties of nitrogenated carbon nanotubes (N-CNTs) exposed to chlorine plasma were investigated using C and N K-edge x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy (SPEM). The C and N K-edge XANES spectra of chlorine-treated N-CNTs consistently reveal the formation of pyridinelike N-CNTs by the observation of 1s ->pi(*)(e(2u)) antibonding and 1s ->pi(*)(b(2g)) bonding states. The valence-band photoemission spectra obtained from SPEM images indicate that chlorination of the nanotubes enhances the C-N bonding. First-principles calculations of the partial densities of states in conjunction with C K-edge XANES data identify the presence of C-Cl bonding in chlorine treated N-CNTs. (C) 2007 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gold is the optimal tip metal for light emission in scanning tunnelling microscopy (LESTM) under ambient conditions. Sharp Au-tips of similar to 10nm radius were produced reliably using a safe, two-step etching method in 20% (w/w) CaCl2 solution. Previous CaCl2-based methods have tended to produce blunter tips, while other etching techniques that do produce sharp Au-tips, do so with the use of toxic or hazardous electrolytes. The tips are characterised using scanning electron microscopy and their efficacy in LESTM is evidenced by high-resolution, simultaneous topographic and photon mapping of Au(1 1 1)- and polycrystalline Au-surfaces. Spectra of the optical emission exhibit only one or two peaks with etched tips in contrast to the more complex spectra typical of cut tips; this feature, together with the highly symmetric geometry of the tips, facilitates a definitive analysis of the light emission process. (c) 2007 Elsevier B. V.. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundus autofluorescence (AF) imaging by confocal scanning laser ophthalmoscopy has been widely used by ophthalmologists in the diagnosis/monitoring of various retinal disorders. It is believed that fundus AF is derived from lipofuscin in retinal pigment epithelial (RPE) cells; however, direct clinicopathological correlation has not been possible in humans. We examined fundus AF by confocal scanning laser ophthalmoscopy and confocal microscopy in normal C57BL/6 mice of different ages. Increasingly strong AF signals were observed with age in the neuroretina and subretinal/RPE layer by confocal scanning laser ophthalmoscopy. Unlike fundus AF detected in normal human subjects, mouse fundus AF appeared as discrete foci distributed throughout the retina. Most of the AF signals in the neuroretina were distributed around retinal vessels. Confocal microscopy of retinal and choroid/RPE flat mounts demonstrated that most of the AF signals were derived from Iba-1+ perivascular and subretinal microglia. An age-dependent accumulation of Iba-1+ microglia at the subretinal space was observed. Lipofuscin granules were detected in large numbers in subretinal microglia by electron microscopy. The number of AF+ microglia and the amount of AF granules/cell increased with age. AF granules/lipofuscin were also observed in RPE cells in mice older than 12 months, but the number of AF+ RPE cells was very low (1.48 mm-2 and 5.02 mm-2 for 12 and 24 months, respectively) compared to the number of AF+ microglial cells (20.63 mm-2 and 76.36 mm-2 for 6 and 24 months, respectively). The fluorescence emission fingerprints of AF granules in subretinal microglia were the same as those in RPE cells. Our observation suggests that perivascular and subretinal microglia are the main cells producing lipofuscin in normal aged mouse retina and are responsible for in vivo fundus AF. Microglia may play an important role in retinal aging and age-related retinal diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper follows previous X-ray diffraction work on crystallisation and phase transformation of electroless nickel–phosphorus deposits, concentrating on microstructural changes. Amorphous or nanocrystalline coatings, depending on their phosphorus content, were heat treated at temperatures between 100 and 500 °C for 1 h. Changes in microstructure after the heat treatment were examined using high-resolution field emission scanning electron microscope. Crystallisation and grain growth effects are observed, as well as some inherent defect structures in the coatings and their changes. These are compared with the previous X-ray diffraction work and in general, good agreement is observed. The complementary strength and weakness of the different characterisation techniques are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The light emission spectrum from a scanning tunnelling microscope (LESTM) is investigated as a function of relative humidity and shown to provide a novel and sensitive means for probing the growth and properties of a water meniscus on the nanometre scale. An empirical model of the light emission process is formulated and applied successfully to replicate the decay in light intensity and spectral changes observed with increasing relative humidity. The modelling indicates a progressive water filling of the tip-sample junction with increasing humidity or, more pertinently, of the volume of the localized surface plasmons responsible for light emission; it also accounts for the effect of asymmetry in structuring of the water molecules with respect to the polarity of the applied bias. This is juxtaposed with the case of a non-polar liquid in the tip-sample nanocavity where no polarity dependence of the light emission is observed. In contrast to the discrete detection of the presence/absence of a water bridge in other scanning probe experiments through measurement of the feedback parameter for instrument control, LESTM offers a means of continuously monitoring the development of the water bridge with sub-nanometre sensitivity. The results are relevant to applications such as dip-pen nanolithography and electrochemical scanning probe microscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electromagnetic radiation originating with localized surface plasmons in the metal-tip/metal-sample nanocavity of a scanning tunneling microscope is demonstrated to extend to a wavelength lambda of at least 1.7 mu m. Progressive spectral extension beyond lambda similar to 1.0 mu m occurs for increasing tip radius above similar to 15 nm, reaching lambda similar to 1.7 mu m for tip radius similar to 100 nm; these observations are corroborated by use of a simple physical model that relates the discrete plasmon mode frequencies to the tip radius. This spectral extension opens up a new regime for scanning tunneling microscope-based optical spectroscopy.