834 resultados para Ciceron, Marco Tulio, 106-43 a.C


Relevância:

30.00% 30.00%

Publicador:

Resumo:

红松针阔混交林,是我国东北东部山地稳定的地带性天然森林植被。开展其林木死亡量和倒木分解规律的研究,不仅能有效地监测红松针阔混交林的动态。而且能加深倒木生态功能的认识,为合理管理倒木资源提出对策。同时也有助于填补我国倒木研究的空白。根据研究,长白山红松阔叶林和阔叶红松林林木年死亡量分别为0.15 ~ 0.66T/年·ha和1.23 T /年·ha。倒木年输入量分别为0.03 ~ 0.19 T/年·ha和0.22 T /年·ha。林木年死亡量和倒木年输入量随着林分时空的变化差异很大。风害是其林木致死的主要原因。红松阔叶林有倒木82株/ha,站杆8析/ha。倒木的生物量为7.90T/ha,倒木的复盖度为1.31%。阔叶红松林倒木和站杆分别为94株/ha和24株/ha,倒木生物量为16.23T/ha。倒木的复盖度为2.02%。红松紫椴倒木分别占上述这两个类型倒木总生物量的59.17%与46.77%。红松阔叶林和阔叶红松林倒木株数、复盖面积、体积和生物量按腐烂级分配基本呈正态分布。红松阔叶林倒木的径级结构与活立木径级结构并非完全一致林地倒木的方向与主风向关系不大。研究表明,红松(y_1)和紫椴(y_2)的分解模型分别为y_1 = 0.3747e - 0.0162t. y_2 = 0.4454 e~(-0.0275t),单项指数衰减模型是红松紫椴倒木分解较为理想的数学模型。它们的分解常数为0.0162 ~ 0.0230/年与0.0275 ~ 0.0390/年,其中粉碎常各为0.0068/年与0.0115/年。红松紫椴倒木重量损失掉50%,大约需43年与25年,重量损失掉95%,大致需185年与106年。红松倒木胸径大小对分解常数无显著影响。倒木下方一般比倒木上方和侧方分解要快一些。但差异并不十分显著。倒木边材到心材的不同层次。其分解常数逐渐下降。红松和紫椴倒木分解中。倒木C含量比较稳定。N、Ca和Na都呈不同程度的递增。k呈下降趋势。而P和Mg变化没有明显的规律。红松阔叶林和阔叶红松林倒木中分别含有C3361.12 kg/ha、7184.11kg/ha; N 26.83kg/ha、33.44 kg/ha; P 3.68kg/ha、6.29kg/ha; ca33.33kg/ha 38.04kg/ha; mg 2.67kg/ha、 3.87 kg/ha; K 4.73 kg/ha. 8.15 kg/ha; Na 1.42 kg/ha、2.76 kg/ha. 倒木是重要的养分库,尤其是N素库。红松阔叶林倒木影响天然更新的主要方式是通过林木风倒或枯死。形成林窗。为天然更新创造有利条件。这和云冷杉林大部分是直接在腐烂的倒木上完成天然更新的机制不同。研究结果表明,倒木是红松针阔混交林生态系统中重要的组成部分。为此建议在长白山自然保护区,应严禁人为清理倒木,并进一步开展倒木的研究。同时针对以生产木材为主的红松阔叶林内侧木,提出了一些相应的管理措施。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

本文研究12C6+离子辐照人类肝细胞系L02细胞诱发hprt基因突变与剂量的效应关系,为正确评价重离子对人体正常组织细胞的辐射风险及危害提供基础数据和依据。分别用12C6+离子束(LET为30keV/μm)和X射线(LET为0.2keV/μm)对L02细胞进行0~6Gy照射后,用克隆形成法检测细胞的存活分数,另外在含有6-TG的培养基中克隆、筛选hprt突变细胞株,测定突变频率。结果表明:12C6+离子辐照后L02细胞的存活分数明显小于X射线照后。两种射线照射后,每106个存活细胞中突变克隆的个数随照射剂量增大而增大,受照细胞的突变频率也都在1Gy处最大。但相对于X射线,人类肝细胞系L02细胞对高LET重离子辐射更敏感,而且12C6+离子束诱发更多的存活细胞hprt基因突变。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural properties for various SiCO isomers in the singlet and triplet states have been investigated using CASSCF methods with a 6-311 +G* basis set and also using three DFT and MP2 with same basis set for those systems except for the linear singlet state. The detailed bonding character is discussed, and the state-state correlations and the isomerization mechanism are also determined. Results indicate that there are four different isomers for each spin state, and for all isomers, the triplet state is more stable than the corresponding singlet state. The most stable is the linear SiCO ((3)Sigma(-)) species and may be refer-red to the ground state. At the CASSCF-MP2(full)/6-311+G* level, the state-state energy separations of the other triplet states relative to the ground state are 43.2 (cyclic), 45.2 (linear SiOC), and 75.6 kcal/mol (linear CSiO), respectively, whereas the triplet-singlet state excitation energies for each configuration are 17.3 (linear SiCO), 2.2 (cyclic SiCO), 10.2 (linear SiOC), and 18.5 kcal/mol (linear CSiO), respectively. SiCo ((3)Sigma(-)) may be classified as silene (carbonylsilene), and its COdelta- moiety possesses CO- property. The dissociation energy of the ground state is 42.5 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and falls within a range of 36.5-41.5 kcal/mol at DFT level, and of 23.7-28.9 kcal/mol at the wave function-correlated level, whereas the vertical IP is 188.8 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and is very close to the first IP of Si atom. Three linear isomers (SiCO, SiOC, and CSiO) have similar structural bonding character. SiOC may be referred to the iso-carbonyl Si instead of the aether compound, whereas the CSiO isomer may be considered as the combination of C (the analogue of Si) with SiO (the analogue of CO). The bonding is weak for all linear species, and the corresponding potential energy surfaces are flat, and thus these linear molecules are facile. Another important isomer is of cyclic structure, it may be considered as the combination of CO with Si by the side pi bond. This structure has the smallest triplet state-singlet state excitation energy (similar to2.2 kcal/mol); the C-O bonds are longer, and the corresponding vibrational frequencies are significantly smaller than those of the other linear species. This cyclic species is not classified as an epoxy compound. State-state correlation analysis and the isomerization pathway searches have indicated that there are no direct correlations among three linear structures for each spin state, but they may interchange by experiencing two transition states and one cyclic intermediate. The easiest pathway is to break the Si-O bond to go to the linear SiCO, but its inverse process is very difficult. The most difficult process is to break the C-O bond and to go to the linear CSiO.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mm NH4+ (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-soluble supramolecular inclusion complexes of alpha-, beta-, and gamma-cyclodextrin-bicapped C-60 (CD/C-60) have been investigated for their photoinduced DNA cleavage activities, with the aim to assess the potential health risks of this class of compounds and to understand the effect of host cyclodextrins having different cavity dimensions. Factors such as incubation temperature, irradiation time, and concentration of NADH or CDs/C-60 supramolecular inclusion complexes have been examined. The results show that alpha-, beta-, and gamma-CDs/C-60 are all able to cleave double-stranded DNA under visible light irradiation in the presence of NADH. However, a difference in the photoinduced DNA cleavage efficiency is observed, where the cleavage efficiency increases in the order of alpha-, beta-, and gamma-CD/C-60. The difference is attributed to the different aggregation behavior of the inclusion complexes in aqueous solution, which is correlated to the cavity dimension of the host cyclodextrin molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gas-phase ion-molecule reactions of C-60 with the methoxymethyl ion [CH3O=CH2](+) and the 1-hydroxyethyl ion [CH3CH=OH](+) generated under the self-chemical-ionization (self-CI) conditions of alkyl methyl ethers and primary alcohols were studied in the ion source of a mass spectrometer. The adduct ions [C60C2H5O](+) and protonated molecules [C60H](+) were observed as the major products of C-60 with the plasma of alkyl methyl ethers. On the contrary, the reactions of C-60 With the plasmas of primary alcohols produced few corresponding adduct ions. The AM1 semiempirical molecular orbital calculations were carried out on 14 possible structures. The calculated results showed that the most stable structure among the possible isomers of [C60C2H5O](+) is the [3+2] cycloadduct. According to experimental and theoretical results, the pathway for the formation of the adduct was presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cp2SmCl(THF) reacts with 0.5 equivalent disodium salts of trans-(+/-)-N,N'-bis(salicylidene)-1,2-cyclohexanediamine give the title complex [(eta(5)-C5H5)Sm(mu-OC20H20N2O)](2)(mu-THF)(THF)(2) (1). X-ray crystal determination shows that the molecule is a dimer, in which two (eta(5)C(5)H(5))Sm(mu-OC20H20N2O) units are connected via a THF oxygen and two bridging oxygen atoms of Schiff base ligands. The average Sm-C distance is 2.78(7) Angstrom, while those of Sm-O (bridging THF oxygen) and Schiff base oxygens are 2.79(3) and 2.43(4) Angstrom; respectively. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas-phase ion-molecule reactions of buckminsterfullerene (C-60) with the acetyl cation CH3-C-+=O (m/z 43) and formylmethyl cation (CH2)-C-+-CH=O (m/z 43, or oxiranyl cation), generated from the self-chemical ionization of acetone and vinyl acetate, respectively, were studied in the ion source of a mass spectrometer. Adduct cations [C60C2H3O](+) (m/z 763) and protonated C-60, [C60H](+) (m/z 721), were observed as the major products. AM1 semiempirical molecular orbital calculations on the possible structures, stabilities and charge locations of the isomers of the adducts [C60C2H3O](+) were carried out at the restricted Hartree-Fock level. The results indicated that the sigma-addition product [C-60-COCH3](+) is the most stable adduct for the reaction of C-60 with CH3-C-+=O rather than that resulting from the [2+2] cycloaddition. The [2+3] cycloadduct and the sigma-adduct [C60CH2CHO](+) might be the most possible coexisting products for the reactions of C-60 with (CH2)-C-+-CH=O or oxiranyl cation. Other [C60C2H3O](+) isomers are also discussed. (C) 1997 by John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direct electrochemistry of cytochrome c was studied at nanometer-sized rare earth element dioxide particle-modified gold electrodes. It was demonstrated that rare earth element oxides can accelerate the electrochemical reaction of cytochrome c and the reversibility of the electrochemical reaction of cytochrome c was related to the size of rare earth element oxide particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P < 0.01) after scallops were stimulated by LPS. PGN or beta-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant Cflec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind beta-glucan. Immunofluorescence assay with polyclonal antibody specific for Cflec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.