986 resultados para Chromatographic techniques
Resumo:
A new approach to study the quantitative relationships between chromatographic retentions and molecular structures of polychlorinated dibenzo-p-dioxins (PCDDs) is described. The retention equations of PCDDs log k' = A + B/T in gas chromatography (GC) are used to evaluate the properties of the regression coefficients A and B, which have been widely accepted as highly reliable chromatographic retentions. The quantitative relationships between the A, B values and the molecular structures are found. The molecular descriptors given for the first time in this article are very effective. As a result, the regression equations are derived with correlation coefficients greater than 0.9995. The A, B values of PCDDs with no standards available have been predicted according to these relationships. They are very useful in chromatographic identification. The retention times of all PCDDs can be conveniently predicted at any temperature program. Compared with the data obtained from the relevant experiments, the results of prediction are very accurate. (C) 2000 Elsevier Science Ltd. All rights reserved.
Cleanup and quantification of polychlorinated dibenzo-p-dioxins/furans and polychlorinated biphenyls
Resumo:
By using modern techniques of isotope dilution, high-resolution gas chromatography/high-resolution mass spectrometry and multiple ions detection, an effective cleanup, qualitative and quantitative method was developed for polychlorinated dibenzo-p-dioxins/furans (PCDD/F) and polychlorinated biphenyls analysis. Based on the chromatographic relative retentions of PCDD/F, a software was established for automatic peak recognition of all the isomers from tetra- to octachlorine PCDD/F. It ensured good reliability and accuracy of the analytical data.
Resumo:
In this letter, the power spectrum of a cooled distributed feedback laser module is measured using the self-heterodyne technique. Periodical oscillation peaks have been observed in the measurement. Further investigation shows that the additional modulation signal is coupled from the thermal electric cooler (TEC) controller to the laser driver, and then applied to the laser diode. The additional modulation can be eliminated by properly isolating the laser driving source from the TEC controller.
Resumo:
Two simple methods for estimating the potential modulation bandwidth of TO packaging technique are presented. The first method is based upon the comparison of the measured frequency responses of the laser diodes and the TO laser modules, and the second is from the equivalent circuit for the test fixture, the TO header, the submount and the bonding wire. It is shown that the TO packaging techniques used in the experiments can potentially achieve a frequency bandwidth of over 10.5 GHz, and the two proposed methods give similar results.
Resumo:
Effects of techniques of implanting nitrogen into buried oxide on the characteristics of the partially depleted silicon-on-insulator (SOI) p-channel metal-oxide-semiconductor field-effect transistors (PMOSFETs) have been studied with three different nitrogen implantation doses, 8 x 10(15), 2 x 10(16), and 1 x 10(17) cm(-2). The experimental results show that this technology can affect the threshold voltage, channel hole mobility and output characteristics of the partially depleted SOI PMOSFETs fabricated with the given material and process. For each type of the partially depleted SOI PMOSFET with nitrided buried oxide, the absolute value of the average threshold voltage increases due to the nitrogen implantation. At the same time, the average channel hole mobility decreases because of the nitrogen implantation. In particular, with the high nitrogen implantation doses, the output characteristic curves of the tested transistors present a distinct kink effect, which normally exists in the characteristic output curves of only partially depleted SOI NMOSFETs.
Resumo:
Scattering parameters of photodiode chip, TO header and TO packaged module are measured, and the effects of TO packaging network on the high-frequency response of photodiode are investigated. Based on the analysis, the potential bandwidth of TO packaging techniques is estimated from the scattering parameters of the TO packaging network. Another method for estimating the potential bandwidth from the equivalent circuit for the TO packaged photodiode model is also presented. The results obtained using both methods show that the TO packaging techniques used in the experiments can potentially achieve a frequency bandwidth of 22 GHz.
Resumo:
Current-based microscopic defect analysis method such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current have been developed over the years at Brookhaven National Laboratory (BNL) for the defect characterizations on heavily irradiated (Phi(n) >= 10(13) n/cm(2)) high-resistivity (>= 2 k Omega cm) Si sensors/detectors. The conventional DLTS method using a capacitance transient is not valid on heavily irradiated high-resistivity Si sensors/detectors. A new optical filling method, using lasers with various wavelengths, has been applied, which is more efficient and suitable than the traditional voltage-pulse filling. Optimum defect-filling schemes and conditions have been suggested for heavily irradiated high-resistivity Si sensors/detectors. (c) 2006 Published by Elsevier Ltd.
Resumo:
A SiGe/Si multiple-quantum-well resonant-cavity-enhanced (RCE) photodetector for 1.3 mum operation was fabricated using bonding reflector process. A full width at half maximum (FWHM) of 6 nm and a quantum efficiency of 4.2% at 1314 nm were obtained. Compared to our previously reported SiGe RCE photodetectors fabricated on separation-by-implanted-oxygen wafer, the mirrors in the device can be more easily fabricated and the device can be further optimized. The FWHM is expected to be less than 1 nm and the detector is fit for density wavelength division multiplexing applications. (C) 2002 American Institute of Physics.
Resumo:
The conduction-band offset Delta E-C has been determined for a molecular beam epitaxy grown GaAs/In0.2Ga0.8As single quantum-well structure, by measuring the capacitance-voltage (C - V) profiling, taking into account a correction for the interface charge density, and the capacitance transient resulting from thermal emission of carriers from the quantum well, respectively. We found that Delta E-C = 0.227 eV, corresponding to about 89% Delta E-g, from the C - V profiling; and Delta E-C = 0.229eV, corresponding to about 89.9% Delta E-g, from the deep-level transient spectroscopy (DLTS) technique. The results suggest that the conduction-band discontinuity Delta E-C obtained from the C-V profiling is in good agreement with that obtained from the DLTS technique. (C) 1998 American Institute of Physics.
Resumo:
Current-based microscopic defect analysis method such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current have been developed over the years at Brookhaven National Laboratory (BNL) for the defect characterizations on heavily irradiated (Phi(n) >= 10(13) n/cm(2)) high-resistivity (>= 2 k Omega cm) Si sensors/detectors. The conventional DLTS method using a capacitance transient is not valid on heavily irradiated high-resistivity Si sensors/detectors. A new optical filling method, using lasers with various wavelengths, has been applied, which is more efficient and suitable than the traditional voltage-pulse filling. Optimum defect-filling schemes and conditions have been suggested for heavily irradiated high-resistivity Si sensors/detectors. (c) 2006 Published by Elsevier Ltd.
Resumo:
The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more in atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.
Resumo:
In this work we investigate the lateral periodicity of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of X-ray scattering techniques. The multilayers were grown by metalorganic Vapour phase epitaxy on (001)GaAs substrates, which were intentionally off-oriented towards the [011]-direction. The substrate off-orientation and the strain distribution was found to affect the structural properties of the superlattices inducing the generation of laterally ordered macrosteps. Several high-resolution triple-crystal reciprocal space maps, which were recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction and contour maps of the specular reflected beam collected in the vicinity of the (000) reciprocal lattice point, are reported and discussed. The reciprocal space maps clearly show a two-dimensional periodicity of the X-ray peak intensity distribution which can be ascribed to the superlattice periodicity in the direction of the surface normal and to a lateral periodicity in a crystallographic direction coinciding with the miscut orientation. The distribution and correlation of the vertical as well as of the lateral interface roughness was investigated by specular reflectivity and diffuse scattering measurements. Our results show that the morphology of the roughness is influenced by the off-orientation angle and can be described by a 2-dimensional waviness.
Resumo:
Current based microscopic defect analysis methods such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) have been further developed in accordance with the need for the defect analysis of highly irradiated (Phi(n) > 10(13) n/cm(2)) high resistivity silicon detectors. The new I-DLTS/TSC system has a temperature range of 8 K less than or equal to T less than or equal to 450 K and a high sensitivity that can detect a defect concentration of less than 10(10)/cm(3) (background noise as low as 10 fA). A new filling method using different wavelength laser illumination has been applied, which is more efficient and suitable than the traditional voltage pulse filling. It has been found that the filling of a defect level depends on such factors as the total concentration of free carriers generated or injected, the penetration length of the laser (laser wavelength), the temperature at which the filling is taking place, as well as the decay time after the filling (but before the measurement). The mechanism of the defect filling can be explained by the competition between trapping and detrapping of defect levels, possible capture cross section temperature dependence, and interaction among various defect levels in terms of charge transferring. Optimum defect filling conditions have been suggested for highly irradiated high resistivity silicon detectors.