998 resultados para 863
Resumo:
从分析系统的工作原理和子机器人运行机理入手,对可重构模块化星球探测机器人系统的翻越台阶能力进行了研究。对于单体子机器人,提出了通过加反向速度和规划手臂姿态的方法,使其能够顺利翻越台阶型障碍物,增强了单体子机器人的翻越台阶能力。由几个子机器人组成的新系统极大地扩展了单体子机器人的环境适应能力,分析了有利于子机器人组合翻越台阶型障碍物的组合形式,提出了首尾相连成环形连接的构型是翻越台阶的最佳组合,并提出了根据环境条件采取不同策略的决策方法,即对于较低的台阶,采取子机器人组合一起翻越,对于高台阶,采取将一个子机器人送上台阶的策略。最后,通过静力学分析,得出了单体子机器人和子机器人组合所能翻越台阶型障碍物的极限尺寸,实际实验很好地验证了分析结果。
Resumo:
介绍了一种新型的可重构模块化星球探测机器人系统,详细分析了子机器人组合的三种基本构型:手臂在前,首尾相连成串状;手臂在后,首尾相连成串状;两个子机器人首尾相连成环状。以两个子机器人为例,对爬坡过程中子机器人系统的各种组合形式进行了静力学分析,在此基础上,对机器人组合的爬坡能力进行了仿真研究,结果表明子机器人组合的爬坡能力与其连接构型紧密相关。实际试验很好地验证了仿真结果,同时,以实际试验为基础,得出了如下结论:在爬坡过程中,手臂在前的串状连接的机器人组合的运动稳定性较差,首尾相连的环状连接的机器人组合是子机器人组合爬坡的首选构型。
Resumo:
本文介绍的仿人机器人具有差动腰部机构,它除了受自身的动力学影响以外,还受到手臂和车体运动以及外力、外力矩等对腰部机构关节力矩的影响。笔者利用高效牛顿-欧拉算法完成了仿人机器人的整体建模;在不考虑各关节间耦合运动的情况下,对整体动力学模型进行适当简化,得到了腰部机构的动力学模型。简化后的动力学模型既反映了机器人车体、腰部及双臂的动力学关系,又大大地减小了计算量,易于实现基于动力学的控制算法。基于动力学模型,给出了腰部机构PD伺服轨迹跟踪控制算法,并结合计算力矩方法用于补偿腰部机构两关节受到的力矩扰动。仿真分析表明,该控制方法可以明显提高腰部机构的位置跟踪精度,并提高仿人机器人的整体作业精度。
Resumo:
可变形机器人AMOEBA-I具有多种构形和多种转向方式.为实现机器人转向性能的优化,提出了可变形机器人的协同转向方法,并建立了相应的数学模型,对不同构形下的协同转向方式进行了理论分析.设定了机器人三个模块在协同转向过程中的运动关系,在此基础上给出了可变形机器人协同转向性能的评价指标.通过理论和实验比较了不同构形下的协同转向方式,实验验证了协同转向方法的有效性.
Resumo:
对采用轮—腿—履带复合型移动机构的地面移动机器人进行了研究,首先分别描述了机器人采用腿—履带、轮—腿—履带两种方式的越障过程,进而对腿—履带复合越障过程进行了动力学建模,分析了电机驱动力矩与机器人速度及障碍物高度等之间的关系,为确定机器人的复杂环境适应能力提供理论依据.
Resumo:
基于行星轮系运动及双足真空吸附原理,提出了一种新型爬壁机器人机构,介绍了机构的构型及结构特点,推导了运动学方程,分析了沿直线行走、平面旋转和跨越交叉壁面三种运动模式.仿真结果表明该机构具有移动速度快、运动灵活、跨越交叉壁面能力强等特点.
Resumo:
研究多车辆多目标追逐的路径规划问题。提出两个基于混合整数线性规划(Mixed integer linear programming,MILP)的多目标追逐(Multi-target pursuit,MTP)模型:就近追逐和"一对一"使能追逐。在两个MIP追逐模型中,小车运动的状态方程考虑为具有线性阻尼的质点动力学方程。采用整数变量描述小车与障碍物的相对位置信息,提出"目标膨胀尺寸"的概念来描述对目标的追逐,定义小车的"追逐方向"。采用选取整变量的等高面法求解MILP追逐问题,并给出初始内点整变量的确定方法。最后给出仿真试验1对两个多目标追逐模型进行对比研究,仿真试验2证实了算法的效率。
Resumo:
利用高效迭代牛顿-欧拉方法对一个21自由度的轮式移动仿人机器人进行了整体动力学建模,该模型虽然维数较高,但消除了分块建模中需要对模块之间相互作用力进行建模的难点问题,并且由于机器人双臂的对称结构,当合理规划双臂运动时,动力学模型将得到部分简化。本文还对某关节运动时在各个关节所产生的力或力矩进行了仿真分析。解析及仿真结果表明,合理规划上臂各关节的协调运动,将极大地削弱车体及腰部各关节所受的力或力矩扰动,为基于动力学的机器人运动控制以及稳定性分析提供理论依据。
Resumo:
运动目标跟踪技术是未知环境下移动机器人研究领域的一个重要研究方向。该文提出了一种基于主动视觉和超声信息的移动机器人运动目标跟踪设计方法,利用一台SONY EV-D31彩色摄像机、自主研制的摄像机控制模块、图像采集与处理单元等构建了主动视觉系统。移动机器人采用了基于行为的分布式控制体系结构,利用主动视觉锁定运动目标,通过超声系统感知外部环境信息,能在未知的、动态的、非结构化复杂环境中可靠地跟踪运动目标。实验表明机器人具有较高的鲁棒性,运动目标跟踪系统运行可靠。
Resumo:
中国科学院沈阳自动化研究所自行研制的灵豹复合移动机器人,采用轮-腿-履带复合移动机构,构建了嵌入式控制系统,设计了模糊控制器控制机器人行走,实现了机械臂的自主联动控制。机器人运动控制更加简便,系统具备良好的适应性和运动稳定性。
Resumo:
随着微/纳米器件及传感器制造的发展,需要一种对大量粒子进行有效操纵的方法,在此背景下,本文介绍了利用行波介电泳方法对大量微粒进行定位和传输操纵的实现方法,分析了利用行波电泳进行微粒操纵所需要的条件,介绍了实现行波介电泳微粒操控的实验系统及实验操作过程,并在该实验系统下实现了对聚苯乙烯小球悬浮及水平传输操纵实验。该系统方法和实现技术为液体环境下微/纳粒子的装配和分离提供了一种可行技术。
Resumo:
碳纳米管的小直径、高纵横比、高强度和高弹性、优良的耐磨损性能以及独特的电学和化学特性,使其成为高分辨率原子力显微镜的理想探针针尖。本文根据制作工艺的特点,综述现有碳纳米管探针的代表性研究和制作方法:组装式和生长式。组装式是通过手工、电场或磁场的方式将制备好的碳纳米管粘附到常规硅探针的末端;而生长式是在常规硅探针末端或悬臂梁上定点催化生长出一定直径和长度的CNT。最后指出这些方法目前存在的主要问题。
Resumo:
碳纳米管(Carbon nanotube,CNT)由于独特的纳米结构以及优异的物理、化学特性,在纳米器件领域具有广阔的应用前景。有效的CNT的操控与装配方法对于其在上述领域的研究应用是至关重要的。为此,本文在分析非均匀电场条件下CNT所受介电泳(Dielectrophoresis,DEP)力模型的基础上,构建了基于DEP力的CNT装配实验系统。本文进行了多壁碳纳米管(MWNTs)的装配实验;并测试了MWCNTs束的电特性。
Resumo:
本文介绍了微力感知的各种方法,分析了每种感知方法的基本原理、检测精度及适用范围,并对微装配与微操作中微力传感器的应用作了简要的回顾。在微操作与微装配中,实现可靠的微力感知是目前研究的重要目标之一。本文通过对各种微力感知方法的基本原理进行研究,总结出六大类方法的特点、检测精度以及适宜的使用场合。目的是为从事微力感知研究的学者提供参考,进而促进微装配和微操作的自动化加工技术水平,实现微型装备的可靠、高产量的批量制造。
Resumo:
用于非线性椭球估计的扩展集员算法在实际应用中存存着数值稳定性差、计算复杂度高以及滤波器参数难以选择等问题.本文提出了一种基于UD分解的自适应扩展集员估计算法,用于解决非线性系统时变状态和参数的联合估计和定界问题.新算法将UD分解与序列更新和选择更新策略结合起米,改进了传统扩展集员算法的数值稳定性和实时性能;同时,对滤波器参数进行自适应选择以进一步降低计算复杂度并达到次优估计结果.仿真实验表明了该算法的有效性和鲁棒性.