961 resultados para political integration
Resumo:
The integration pattern and adjacent host sequences of the inserted pMThGH-transgene in the F4 hGH-transgenic common carp were extensively studied. Here we show that each F4 transgenic fish contained about 200 copies of the pMThGH-transgene and the transgenes were integrated into the host genome generally with concatemers in a head-to-tail arrangement at 4-5 insertion sites. By using a method of plasmid rescue, four hundred copies of transgenes from two individuals of F4 transgenic fish, A and B, were recovered and clarified into 6 classes. All classes of recovered transgenes contained either complete or partial pMThGH sequences. The class I, which comprised 83% and 84.5% respectively of the recovered transgene copies from fish A and B, had maintained the original configuration, indicating that most transgenes were faithfully inherited during the four generations of reproduction. The other five classes were different from the original configuration in both molecular weight and restriction map, indicating that a few transgenes had undergone mutation, rearrangement or deletion during integration and germline transmission. In the five types of aberrant transgenes, three flanking sequences of the host genome were analyzed. These sequences were common carp beta-actin gene, common carp DNA sequences homologous to mouse phosphoglycerate kinase-1 and human epidermal keratin 14, respectively.
Resumo:
Using a nuclear transplantation approach, the integration and expression of the green fluorescent protein (GFP) gene in the embryogenesis of transgenic leach (Misgurnus anguillicaudatus Cantor) have been studied. The GFP gene expression is first observed at the gastrula stage, which is consistent with the initiation of cell differentiation of fish embryos. The time course of the foreign gene expression is correlated with the regulatory sequences. The expression efficiency also depends on the gene configuration: the expression of pre-integrating circular plasmid at early embryos is higher than that of the linear plasmid. The integration of the GFP gene is first detected at the blastula stage and lasts for quite a long period. When two types of different plasmids are co-injected into fertilized eggs, the behavior of their integration and expression is not identical.
Resumo:
We present the monolithic integration of a sampled-grating distributed Bragg reflector (SC-DBR) laser with a quantum-well electroabsorption modulator (QW-EAM) by combining ultra-low-pressure (55 mbar) selective-area-growth (SAG) metal-organic chemical vapour deposition (MOCVD) and quantum-well intermixing (QWI) for the first time. The QW-EAM and the gain section can be grown simultaneously by using SAG MOCVD technology. Meanwhile, the QWI technology offers an abrupt band-gap change between two functional sections, which reduces internal absorption loss. The experimental results show that the threshold current I-th = 62 mA, and output power reaches 3.6 mW. The wavelength tuning range covers 30 nm, and all the corresponding side mode suppression ratios are over 30 dB. The extinction ratios at available wavelength channels can reach more than 14 dB with bias of -5 V.
Resumo:
This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.
Resumo:
A new broadband filter, based on the high level bandgap in 1-D photonic crystals (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si is designed by the plane wave expansion method (PWEM) and the transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-level bandgaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and the PC device. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A new broadband filter, based on the high-order band gap in one-dimensional photonic crystal (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si, has been designed by the plane wave expansion method (PWEM) and transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-order band gaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and PC device. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future. (C) 2009 Optical Society of America
Resumo:
The design and basic characteristics of a strained InGaAsP-InP multiple-quantum-well (MQW) DFB laser monolithically integrated with an electroabsorption modulator (EAM) by ultra-low-pressure (22 mbar) selective-area-growth (SAG) MOCVD are presented. A fundamental study of the controllability and the applicability of band-gap energy by using the SAG, method is performed. A large band-gap photoluminescence wavelength shift of 88 mn. was obtained with a small mask width variation (0-30 mu m). The technique is then applied to fabricate a high performance strained MQW EAM integrated with a DFB laser. The threshold current of 26 mA at CW operation of the device with DFB laser length of 300 mu m and EAM length of 150 mu m has been realized at a modulator bias of 0 V. The devices also exhibit 15 dB on/off ratio at an applied bias voltage of 5 V.
Resumo:
This paper reports that the structures of AlGaAs/InGaAs high electron mobility transistor (HEMT) and AlAs/GaAs resonant tunnelling diode (RTD) are epitaxially grown by molecular beam epitaxy ( MBE) in turn on a GaAs substrate. An Al0.24Ga0.76As chair barrier layer, which is grown adjacent to the top AlAs barrier, helps to reduce the valley current of RTD. The peak-to-valley current ratio of fabricated RTD is 4.8 and the transconductance for the 1-mu m gate HEMT is 125mS/mm. A static inverter which consists of two RTDs and a HEMT is designed and fabricated. Unlike a conventional CMOS inverter, the novel inverter exhibits self-latching property.
Resumo:
A strained InGaAsP-InP multiple-quantum-well DFB laser monolithically integrated with electroabsorption modulator by ultra-low-pressure (22 mbar) selective-area-growth is presented. The integrated chip exhibits superior characteristics, such as low threshold current of 19 mA, single-mode operation around 1550 nm range with side-mode suppression ratio over 40 dB, and larger than 16 dB extinction ratio when coupled into a single-mode fiber. More than 10 GHz modulation bandwidth is also achieved. After packaged in a compact module, the device successfully performs 10-Gb/s NRZ transmission experiments through 53.3 km of standard fiber with 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at bit-error-rate of 10(-1)0 is confirmed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Proceeding from the consideration of the demands from the functional architecture of high speed, high capacity optical communication network, this paper points out that photonic integrated devices, including high speed response laser source, narrow band response photodetector high speed wavelength converter, dense wavelength multi/demultiplexer, low loss high speed response photo-switch and multi-beam coupler are the key components in the system. The, investigation progress in the laboratory will be introduced.
Resumo:
We successfully used the metal mediated-wafer bonding technique in transferring the as-grown cubic GaN LED structure of Si substrate. The absorbing GaAs substrate was removed by using the chemical solutions of NH4OH : H2O2=1 : 10. SEM and PL results show that wafer bonding technique could transfer the cubic GaN epilayers uniformly to Si without affecting the physical and optical properties of epilayers. XRD result shows that there appeared new peaks related to AgGa2 and Ni4N diffraction, indicating that the metals used as adhesive and protective layers interacted with the p-GaN layer during the long annealing process. It is just the reaction that ensures the reliability of the integration of GaN with metal and minor contact resistance on the interface.
Resumo:
The hybrid integrated photonic switch and not logic gate based on the integration of a GaAs VCSEL (Vertical Cavity Surface Emitting Lasers) and a MISS (Metal-Insulator-Semiconductor Switches) device are reported. The GaAs VCSEL is fabricated by selective etching and selective oxidation. The Ultra-Thin semi-Insulating layer (UTI) of the GaAs MISS is formed by using oxidation of A1As that is grown by MBE. The accurate control of UTI and the processing compatibility between VCSEL and MISS are solved by this procedure. Ifa VCSEL is connected in series with a MISS, the integrated device can be used as a photonic switch, or a light amplifier. A low switching power (10 mu W) and a good on-off ratio (17 dB contrast) have been achieved. If they are connected in parallel, they perform a photonic NOT gate operation.
Resumo:
A monolithic silicon CMOS optoelectronic integrated circuit (OEIC) is designed and fabricated with standard 0.35 mu m CMOS technology. This OEIC circuit consists of light emitting diodes (LED), silicon dioxide waveguide, photodiodes and receiver circuit. The silicon LED operates in reverse breakdown mode and can be turned on at 8.5V 10mA. The silicon dioxide waveguide is composed of multiple layers of silicon dioxide between different metals layers. A two PN-junctions photodetector composed of n-well/p-substrate junction and p(+) active implantation/n-well junction maximizes the depletion region width. The readout circuitry in pixels is exploited to handle as small as 0.1nA photocurrent. Simulation and testing results show that the optical emissions powers are about two orders higher than the low frequency detectivity of silicon CMOS photodetcctor and receiver circuit.
Resumo:
We report on chip-scale optical gates based on the integration of evanescent waveguide unitraveling-carrier photodiodes (EC-UTC-PDs) and intra-step quantum well electroabsorption modulators (IQW-EAMs) on n-InP substrates. These devices exhibit simultaneously 2.1 GHz and -16.2 dB RF-gain at 21 GHz with a 450 Omega thin-film resistor and a bypass capacitor integrated on a chip.