940 resultados para design and technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pen-based user interface has become a hot research field in recent years. Pen gesture plays an important role in Pen-based user interfaces. But it’s difficult for UI designers to design, and for users to learn and use. In this purpose, we performed a research on user-centered design and recognition pen gestures. We performed a survey of 100 pen gestures in twelve famous pen-bases systems to find problems of pen gestures currently used. And we conducted a questionnaire to evaluate the matching degree between commands and pen gestures to discover the characteristics that a good pen gestures should have. Then cognition theories were applied to analyze the advantages of those characteristics in helping improving the learnability of pen gestures. From these, we analyzed the pen gesture recognition effect and presented some improvements on features selection in recognition algorithm of pen gestures. Finally we used a couple of psychology experiments to evaluate twelve pen gestures designed based on the research. It shows those gestures is better for user to learn and use. Research results of this paper can be used for designer as a primary principle to design pen gestures in pen-based systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated pilot-scale dimethyl ether (DME) synthesis system from corncob was demonstrated for modernizing utilization of biomass residues. The raw bio-syngas was obtained by the pyrolyzer/gasifier at the yield rate of 40-45 Nm(3)/h. The content of tar in the raw bio-syngas was decreased to less than 20 mg/Nm(3) by high temperature gasification of the pyrolysates under O-2-rich air. More than 70% CO2 in the raw bio-syngas was removed by pressure-swing adsorption unit (PSA). The bio-syngas (H-2/CO approximate to 1) was catalytically converted to DME in the fixed-bed tubular reactor directly over Cu/Zn/Al/HZSM-5 catalysts. CO conversion and space-time yield of DME were in the range of 82.0-73.6% and 124.3-203.8 kg/m(cat)(3)/h, respectively, with a similar DME selectivity when gas hourly space velocity (GHSV, volumetric flow rate of syngas at STP divided by the volume of catalyst) increased from 650 h(-1) to 1500 h(-1) at 260 degrees C and 4.3 MPa. And the selectivity to methanol and C-2(+) products was less than 0.65% under typical synthesis condition. The thermal energy conversion efficiency was ca. 32.0% and about 16.4% carbon in dried corncob was essentially converted to DME with the production cost of ca. (sic) 3737/ton DME. Cu (111) was assumed to be the active phase for DME synthesis, confirmed by X-ray diffraction (XRD) characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and operation of a new clapboard-type internal circulating fluidized-bed gasifier is proposed in this article. By arranging the clapboard in the bed, the gasifier is thus divided into two regions, which are characterized by different fluidization velocities. The bed structure is designed so that it can guide the circulating flow passing through the two regions, and therefore the feedstock particles entrained in the flow experience longer residence time. The experimental results based on the present new design, operating in the temperature range of 790 degrees C-850 degrees C, indicate that the gas yield is from 1.6-1.9 Nm(3)/kg feedstock, the gas enthalpies are 5,345 kJ/Nm(3) for wood chip and 4,875 kJ/m(3) for rice husk, and a gasification efficiency up to 75% can be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of key geometrical parameters on the performance of integrated spiral inductors are investigated with the 3D electromagnetic simulator HFSS. While varying geometrical parameters such as the number of turns (N),the width of the metal traces (W),the spacing between the traces (S),and the inner diameter (ID), changes in the performance of the inductors are analyzed in detail. The reasons for these changes in performance are presented. Simulation results indicate that the performance of an integrated spiral inductor can be improved by optimizing its layout. Some design rules are summarized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new material structure with Al0.22Ga(>. 78 As/Ino.i5 Gao.ss As/GaAs emitter spacer layer and GaAs/Ino.15-Gao.8ii As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated. RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio and the available current density for RTDs at room temperature are computed. Analysis on these results suggests that adjusting material structure and optimizing fabrication processes will be an effective means to improve the quality of RTDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rearrangeable nonblocking thermo-optic 4×4 switching matrix,which consists of five 2×2 multimode interference-based Mach-Zehnder interferometer(MMI-MZI) switch elements,is designed and fabricated.The minimum and maximum excess loss for the matrix are 6.6 and 10.4dB,respectively.The crosstalk in the matrix is measured to be between -12 and -19.8dB.The switching speed of the matrix is less than 30μs.The power consumption for the single switch element is about 330mW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ultracompact 3-dB coupler is designed and fabricated in silicon-on-insulator,based on 12 line tapered multimode interference(MMI) coupler.Comparing with the conventional straigth MMI coupler,the device is-40% shorter in length.The device exhibits uniformity of 1.3dB and excess loss of 2.5dB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarization-insensitive semiconductor optical amplifiers (SOA's) with tensile-strained multi-quantum-wells as actice regions are designed and fabricated. The 6x6 Luttinger-Kohn model and Bir-Pikus Hamiltonian are employed to calculate the valence subband structures of strained quantum wells, and then a Lorentzian line-shape function is combined to calculate the material gain spectra for TE and TM modes. The device structure for polarization insensitive SOA is designed based on the materialde gain spectra of TE and TM modes and the gain factors for multilayer slab waveguide. Based on the designed structure parameters, we grow the SOA wafer by MOCVD and get nearly magnitude of output power for TE and TM modes from the broad-area semiconductor lasers fabricated from the wafer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of A1As layer that is grown by MBE form the Ultra-Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage V-s, sufficient incident light can switch OMIST from high impedance low current"off"state to low impedance high current "on"state. The absorbing material of OMIST is GaAs, so if the wavelength of incident light within 600 similar to 850nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/- 2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 mu m, and the corresponding nonlinearity coefficient and birefringence are about 150 W-1 km(-1) and 2.5 x 10(-3) at 1.55 mu m, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing. (C) 2010 Optical Society of America