927 resultados para Partial Differential Equations with “Maxima”


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jacobian singularities of differential operators in curvilinear coordinates occur when the Jacobian determinant of the curvilinear-to-Cartesian mapping vanishes, thus leading to unbounded coefficients in partial differential equations. Within a finite-difference scheme, we treat the singularity at the pole of polar coordinates by setting up complementary equations. Such equations are obtained by either integral or smoothness conditions. They are assessed by application to analytically solvable steady-state heat-conduction problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct exact solutions for a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the G'/G expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695345]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a uniqueness result related to the Germain–Lagrange dynamic plate differential equation. We consider the equation {∂2u∂t2+△2u=g⊗f,in ]0,+∞)×R2,u(0)=0,∂u∂t(0)=0, where uu stands for the transverse displacement, ff is a distribution compactly supported in space, and g∈Lloc1([0,+∞)) is a function of time such that g(0)≠0g(0)≠0 and there is a T0>0T0>0 such that g∈C1[0,T0[g∈C1[0,T0[. We prove that the knowledge of uu over an arbitrary open set of the plate for any interval of time ]0,T[]0,T[, 0

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This paper presents an interpretation of a classic optical flow method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion approach in digital image analysis. We introduce an improvement into the model formulation, and we establish well-posedness results for the resulting system of parabolic partial differential equations. Our method avoids linearizations in the optical flow constraint, and it can recover displacement fields which are far beyond the typical one-pixel limits that are characteristic for many differential methods for optical flow recovery. A robust numerical scheme is presented in detail. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales. The high accuracy of the proposed method is demonstrated by means of a synthetic and a real-world image sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Factorization Method localizes inclusions inside a body from measurements on its surface. Without a priori knowing the physical parameters inside the inclusions, the points belonging to them can be characterized using the range of an auxiliary operator. The method relies on a range characterization that relates the range of the auxiliary operator to the measurements and is only known for very particular applications. In this work we develop a general framework for the method by considering symmetric and coercive operators between abstract Hilbert spaces. We show that the important range characterization holds if the difference between the inclusions and the background medium satisfies a coerciveness condition which can immediately be translated into a condition on the coefficients of a given real elliptic problem. We demonstrate how several known applications of the Factorization Method are covered by our general results and deduce the range characterization for a new example in linear elasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis presents a probabilistic approach to the theory of semigroups of operators, with particular attention to the Markov and Feller semigroups. The first goal of this work is the proof of the fundamental Feynman-Kac formula, which gives the solution of certain parabolic Cauchy problems, in terms of the expected value of the initial condition computed at the associated stochastic diffusion processes. The second target is the characterization of the principal eigenvalue of the generator of a semigroup with Markov transition probability function and of second order elliptic operators with real coefficients not necessarily self-adjoint. The thesis is divided into three chapters. In the first chapter we study the Brownian motion and some of its main properties, the stochastic processes, the stochastic integral and the Itô formula in order to finally arrive, in the last section, at the proof of the Feynman-Kac formula. The second chapter is devoted to the probabilistic approach to the semigroups theory and it is here that we introduce Markov and Feller semigroups. Special emphasis is given to the Feller semigroup associated with the Brownian motion. The third and last chapter is divided into two sections. In the first one we present the abstract characterization of the principal eigenvalue of the infinitesimal generator of a semigroup of operators acting on continuous functions over a compact metric space. In the second section this approach is used to study the principal eigenvalue of elliptic partial differential operators with real coefficients. At the end, in the appendix, we gather some of the technical results used in the thesis in more details. Appendix A is devoted to the Sion minimax theorem, while in appendix B we prove the Chernoff product formula for not necessarily self-adjoint operators.