994 resultados para POINT-DEFECTS
Resumo:
In this paper, we analyze and compare electrical compensation and deep level defects in semi-insulating ( SI) materials prepared by Fe-doping and high temperature annealing of undoped InP. Influence of deep level defects in the SI-InP materials on the electrical compensation has been studied thermally stimulated current spectroscopy (TSC). Electrical property of the Fe-doped SI-InP is deteriorated due to involvement of a high concentration of deep level defects in the compensation. In contrast, the concentration of deep defects is very low in high temperature annealed undoped SI-InP in which Fe acceptors formed by diffusion act as the only compensation centre to pin the Fermi level, resulting in excellent electrical performance. A more comprehensive electrical compensation model of SI-InP has been given based on the research results.
Resumo:
The deep level luminescence of crack-free Al0.25Ga0.75N layers grown on a GaN template with a high-temperature grown AlN interlayer has been studied using spatially resolved cathodoluminescence (CL) spectroscopy. The CL spectra of Al0.25Ga0.75N grown on a thin AlN interlayer present a deep level aquamarine luminescence (DLAL) band at about 2.6 eV and a deep level violet luminescence (DLVL) band at about 3.17 eV. Cross-section line scan CL measurements on a cleaved sample edge clearly reveal different distributions of DLAL-related and DLVL-related defects in AlGaN along the growth direction. The DLAL band of AlGaN is attributed to evolve from the yellow luminescence band of GaN, and therefore has an analogous origin of a radiative transition between a shallow donor and a deep acceptor. The DLVL band is correlated with defects distributed near the GaN/AlN/AlGaN interfaces. Additionally, the lateral distribution of the intensity of the DLAL band shows a domainlike feature which is accompanied by a lateral phase separation of Al composition. Such a distribution of deep level defects is probably caused by the strain field within the domains. (c) 2006 American Institute of Physics.
Resumo:
While the thermodynamic nonequilibrium properties of nanoparticles are being extensively studied, the thermodynamic nonequilibrium properties of their counterpart: nanocavities, however, are less noticed. Here, we systematically review and comprehensively model the recently published results on the newly-found thermodynamic nonequilibriurn properties of nanocavities in covalently bound materials during energetic beam irradiation. We also review and model the thermodynamic nonequilibrium properties of nanoparticles. The review and modelling not only demonstrates the novel nonequilibriurn properties of such an open-volume nanostructure during external excitation but also gives a deep insight into the nonequilibrium thermodynamics of amorphous structures and the difference in the behaviours of defects in crystalline and in amorphous silicon. Especially, the review and modelling leads to two new concepts:anti-symmetry relation between a nanoparticle and a nanocavity;energetic beam induced-soft mode and lattice instability in condensed matter;which reveals that structure of a condensed matter would be unstable not only at nanosize scale but also at a nanotime scale in general. It is also reveals that such nanoinstabilities would be more pronounced in an amorphous structure than in a crystalline structure.
Resumo:
National Natural Science Foundation of China 10674129
Resumo:
In this paper, we focus on the dipole mode of the two-dimensional (2D) photonic crystal (PC) single point defect cavity (SPDC) lasers and we report the fabrication and characterization of 2D PC SPDC lasers with the structure of adjusted innermost air holes. The photonic band and cavity Q factors are simulated by means of plane wave expansion (PWE) and finite-difference time-domain (FDTD), respectively. In order to improve the optical confinement of the SPDC, the diameter of the innermost holes was adjusted. Different lasing performances are observed experimentally. The experimental results agree with the theoretical prediction very well. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Closely related to the quantum information processing in solid states, we study the quantum measurement of single electron state by a mesoscopic charge-sensitive detector, namely the quantum point contact (QPC). We find that the conventional Lindblad-type master equation is not appropriate for describing the underlying measurement dynamics. The treatment developed in this work properly accounts for the energy-exchange between the detector and the measured system, and its role on the detailed-balance relation. A valid description for the QPC measurement dynamics is provided which may have impact on the study of quantum measurement and quantum feedback control in solid states.
Resumo:
The morphological defects and uniformity of 4H-SiC epilayers grown by hot wall CVD at 1500 degrees C on off-oriented (0001) Si faces are characterized by atomic force microscope, Nomarski optical microscopy, and Micro-Raman spectroscopy. Typical morphological defects including triangular defects, wavy steps, round pits, and groove defects are observed in mirror-like SiC epilayers. The preparation of the substrate surface is necessary for the growth of high-quality 4H-SiC epitaxial layers with low-surface defect density under optimized growth conditions. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Electron irradiation-induced deep level defects have been studied in InP which has undergone high-temperature annealing in phosphorus and iron phosphide ambients, respectively. In contrast to a high concentration of irradiation-induced defects in as-grown and phosphorus ambient annealed InP, InP pre-annealed in iron phosphide ambient has a very low concentration of defects. The phenomenon has been explained in terms of a faster recombination of radiation-induced defects in the annealed InP. The radiation-induced defects in the annealed InP have been compared and studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.
Resumo:
Defects in ZnO films grown by radio-frequency reactive magnetron sputtering under variable ratios between oxygen and argon gas have been investigated by using the monoenergetic positron beam technique. The dominate intrinsic defects in these ZnO samples are O vacancies (V-O) and Zn interstitials (Zn-i) when the oxygen fraction in the O-2/Ar feed gas does not exceed 70% in the processing chamber. On the other hand, zinc vacancies are preponderant in the ZnO Elms fabricated in richer oxygen environment. The concentration of zinc vacancies increases with the increasing (2) fraction. For the oxygen fraction 85%, the number of zinc vacancies that could trap positrons will be smaller. It is speculated that some unknown defects could shield zinc vacancies. The concentration of zinc vacancies in the ZnO films varies with the oxygen fraction in the growth chamber, which is in agreement with the results of photoluminescence spectra.
Resumo:
We report the transmission-electron microscopy study of the defects in wurtzitic GaN films grown on Si(111) substrates with AIN buffer layers by the metal-organic chemical vapour deposition method. The In0.1Ga0.9N/GaN multiple quantum well (MQW) reduced the dislocation density by obstructing the mixed and screw dislocations passing through the MQW. No evident reduction of the edge dislocations density by the MQW was observed. It was found that dislocations with screw component can be located at the boundaries of sub-grains slightly in-plane misoriented.
Resumo:
Isochronal thermal-annealing behavior of NTD floating-zone silicon grown in hydrogen ambient (called NTD FZ(H) Si) is presented. The dependencies of resistivity and carrier mobility on annealing temperature are determined by room-temperature Hall electrical measurements. Using infrared absorption spectroscopy, hydrogen-related infrared absorption bands evolution for NTD FZ(H) Si were measured in detail. It is demonstrated that compared with NTD FZ(Ar) Si, NTD FZ(H) Si exhibits the striking features upon isochronal annealing in temperature range of 150 similar to 650 degreesC: there appears the formation of an excessive shallow donor at annealing temperature of 500 degreesC. It is shown that the annealing behavior is directly related to the reaction of hydrogen and irradiation-induced defects. The evolution of infrared absorption bands upon temperature reflects a series of complex reaction process: irradiation-induced defects decomposition, breaking of Si-H bonds, migration and aggregation of atomic hydrogen, and formation of the secondary defects. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Positron annihilation lifetime (PAL) and photoinduced current transient spectroscopies (PICTS) have been employed to study the formation of compensation defects in undoped InP under different annealing processes with pure phosphorus (PP) ambience and iron phosphide (IP) ambience, respectively. The different annealing ambiences convert the as-grown n-type undoped InP into two types of semi-insulating (SI) states. The positron average lifetimes of as-grown InP, PP SI-InP, and IP SI-InP are found to be 246, 251, and 243 ps, respectively, which are all longer than the bulk lifetime of 240 ps, indicating the existence of vacancy-type positron-trapping defects. For as-grown InP, VInH4 complexes are the dominant defects. They dissociate into VInHn(0less than or equal tonless than or equal to3) acceptor vacancies under PP ambience annealing, compensating the residual shallow donors and turning the material semi-insulating. In forming IP SI-InP, diffusion of iron into V-In complexes under IP ambience annealing produces the substitutional compensation defect Fe-In, causing a shorter positron average lifetime. The PICTS measurements show that a group of vacancy-type defects has been suppressed by iron diffusion during the annealing process, which is in good agreement with the PAL results. (C) 2003 American Institute of Physics.
Resumo:
Photoluminescence (PL) and photo induced current transient spectroscopy (PICTS) have been used to study deep levels in semi-insulating (SI) InP prepared by annealing undoped InP in pure phosphorus (PP) and iron phosphide (IP) ambient. Defects are much fewer in IP SI-InP than in PP SI-InP. Deep-level-related PL emission could only be detected in IP SI-InP. The results indicate that Fe diffusion inhibits the thermal formation of a number of defects in annealed InP. A complex defect has been formed in the annealing process in the presence of Fe.