953 resultados para Multimode laser beam analyzer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from I to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

808 nm high-power laser diodes are gown by MBE. In the laser structure, the combination of Si-doped GRIN (graded-index) region adjacent to n-AlGaAs cladding layer with reduced Be doping concentration near the active region has been used to diminish Be diffusion and oxygen incorporation. As compared with the laser structure which has undoped GRIN region and uniform doping concentration for Si and Be, respectively, in the cladding layers, the slope efficiency has increased by about 8%. Typical threshold current density of 300 A/cm(2) and the minimum threshold current density of 220 A/cm(2) for lasers with 500 mu m cavity length are obtained. A high slope efficiency of 1.3 W/A for coated lasers with 1000 mu m cavity length is also demonstrated, Recorded CW output power at room temperature has reached 2.3 W.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have recently found evidence of new donor acceptor pair (DAP) luminescence in molecular beam epitaxy (MBE) grown films. A variety of nominally undoped samples have been studied by photoluminescence (PL) over a temperature range of 5-300 K. The samples show intensive luminescence al energies of 3.404-3.413 eV varying with different sample at 5 K, as well as a fairly strong (DX)-X-0 line at low temperature. We attribute the Line at 3.404-3.413 eV to DAP recombination which is over 0.1 eV different from the well known DAP caused by ME-doping in GaN. The DAP line shows fine structure. it even predominates in one particular sample. The peak position shifts to higher energy with temperature increasing from 5 up to 70 K, and as the excitation laser intensity increases. The data are consistent with DAP luminescence involving an acceptor level of about 90 meV (presumably carbon) above the valence band edge in GaN. It is much shallower than the acceptor level of 250 meV produced by the p-type dopant Mg which is commonly used at present. (C) 1997 Elsevier Science S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have determined the far-field patterns and beam parameters of vertical-cavity surface-emitting lasers (VCSELs) with different structures. The results show that the window diameter and the active-layer aperture of VCSELs strongly influence laser far-field distributions and beam characteristics; for VCSELs with small window omega=5 mu m, only one dominant lobe has been observed in the far-field profiles, even though injected current was increased up to 2 Ith; and the smaller the ratio of the window diameter to the active-layer aperture, the larger is the far-field divergence. The laser structure dependence of the K factor has also been studied. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor couples are defined as Bragg reflectors at one end of the resonator. The spectral measurement at 80K shows the quasi-continuous-wave operation with the wavelength of 5.36μm for a 22μm-wide and 2mm-long epilayer-up bonded device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous wave operation of a semiconductor laser diode based on five stacks of InAs quantum dots (QDs) embedded within strained InGaAs quantum wells as an active region is demonstrated. At room temperature, 355-mW output power at ground state of 1.33-1.35 microns for a 20-micron ridge-waveguide laser without facet coating is achieved. By optimizing the molecular beam epitaxy (MBE) growth conditions, the QD density per layer is raised to 4*10^(10) cm^(-2). The laser keeps lasing at ground state until the temperature reaches 65 Celsius degree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dualwaveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB. These devices exhibit a 3dB modulation bandwidth of 15. 0GHz, and modulator DC extinction ratios of 16.2dB. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7. 3°× 18. 0°,respectively, resulting in a 3. 0dB coupling loss with a cleaved single-mode optical fiber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel 1.55μm laser diode with spot-size converter is designed and fabricated using conventional photolithography and chemical wet etching process.For the laser diode,a ridge double-core structure is employed.For the spot-size converter,a buried ridge double-core structure is incorporated.The laterally tapered active core is designed and optically combined with the thin and wide passive core to control the size of mode.The laser diode threshold current is measured to be 40mA together with high slop efficiency of 0.35W/A.The beam divergence angles in the horizontal and vertical directions are as small as 14.89°×18.18°,respectively,resulting in low-coupling losses with a cleaved optical fiber (3dB loss).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0.8dB,and the uniformity is 0.45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0.7dB at 1550nm.The device size is only 2mm×10mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A silicon-on-insulator based channel-shifted multimode interference coupler is designed and fabricated. A two dimensional beam propagation method is used to analyze the dependence of coupler′s performances on the width and length of the multimode waveguide. The device fabricated has a power shift ratio of 73 and an excess loss of about 2.2 dB. An enhancement of fabrication accuracies could further improve the coupler performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a practical coupling system, a cylindrical microlens is used to collimate the emission of a high powerlaser diode (LD) in the dimension perpendicular to the junction plane. Using passive alignment, the LD isplaced in the focus of the cylindrical microlens generally, regardless of the performance of the multimodeoptical fiber and the LD. In this paper, a more complete analysis is arrived at by ray-tracing technique,by which the angle θ of the ray after refraction is computed as a function of the angle θo of the ray beforerefraction. The focus of the cylindrical microlens is not always the optimal position of the LD. In fact, inorder to achieve a higher coupling efficiency, the optimal distance from the LD to the cylindrical microlensis dependent on not only the radius R and the index of refraction n of the cylindrical microlens, but alsothe divergence angle of the LD in the dimension perpendicular to the junction plane and the numericalaperture (NA) of the multimode optical fiber. The results of this discussion are in good agreement withexperimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a set of microoptics the output radiation from a continuous wave (CW) linear laser diode array is coupled into a multi-mode optical fiber of 400 ptm diameter. The CW linear laser diode array is a 1 cm laser diode bar with 19 stripes with 100 fxm aperture spaced on 500 (xm centers. The coupling system contains packaged laser diode bar, fast axis collimator, slow axis collimation array, beam transformation system and focusing system. The high brightness, high power density and single fiber output of a laser diode bar is achieved. The coupling efficiency is 65% and the power density is up to 1.03 * 10~4 W/cm~2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel structure of MMI coupler with different background refractive index has been designed. With stronger optical confinement in multimode waveguides, more guided modes are excited to improve imaging quality. Two-dimensional finite difference beam propagation method (2-D FDBPM) was used to simulate this new structure and had proven that its imaging quality, in terms of power uniformity and excess loss, is much better than conventional structure. This structure can be applied in SOI rib waveguides by deep etching method.