988 resultados para Modelación matemática
Resumo:
The aim of the present study is to investigate the way through which the relations between Mathematics and Religion emerge in the work of Blaise Pascal. This research is justified by the need to deepen these relations, so far little explored if compared to intersection points between Mathematics and other fields of knowledge. The choice for Pascal is given by the fact that he was one of the mathematicians who elaborated best one reflection in the religious field thus provoking contradictory reactions. As a methodology, it is a bibliographical and documental research with analytical-comparative reading of referential texts, among them the Oeuvres complètes de Pascal (1954), Le fonds pascalien à Clermont-Ferrand (2001), Mathematics in a postmodern age: a cristian perspective by Howell & Bradley (2001), Mathematics and the divine: a historical study by Koetsier & Bergmans (2005), the Anais dos Seminários Nacionais de História da Matemática and the Revista Brasileira de História da Matemática. The research involving Pascal's life as a mathematician and his religious experience was made. A wider background in which the subject matter emerges was also researched. Seven categories connected to the relation between mathematics and religion were identified from the reading of texts written by mathematicians and historians of mathematics. As a conclusion, the presence of four of these seven categories was verified in Pascal's work
Resumo:
The aim of the present study is to reevaluate the logical thought of the English mathematician George Boole (1815 - 1864). Thus, our research centers on the mathematical analysis of logic in the context of the history of mathematics. In order to do so, we present various biographical considerations about Boole in the light of events that happened in the 19th century and their consequences for mathematical production. We briefly describe Boole's innovations in the areas of differential equations and invariant theory and undertake an analysis of Boole's logic, especially as formulated in the book The Mathematical Analysis of Logic, comparing it not only with the traditional Aristotelian logic, but also with modern symbolic logic. We conclude that Boole, as he intended, expanded logic both in terms of its content and also in terms of its methods and formal elaboration. We further conclude that his purpose was the mathematical modeling of deductive reasoning, which led him to present an innovative formalism for logic and, because the different ways it can be interpreted, a new conception of mathematics
Resumo:
This work is located at the shield of research that defends the use of Mathematics History, based on the utilization of historical artifacts at teaching activities, at Mathematics classrooms, and at graduation courses for teachers of Elementary School and of the first grades of High School. The general objective is to examine the possibility of the use of historical artifacts, at teaching activities, at graduation courses for teachers of Elementary School and of the first grades of High School. Artifact, at this work, is comprehended as objects, documents, monuments, images and other kinds of materials that make sense to the Human actions at the past and that represent what have been said and done at the Human history. At the construction of the theoretical-methodological way of the research we have based ourselves upon the ideas of the authors that are engaged at the teachers formation; at researchers adherents to the use of Mathematics History (MH) as a methodological resource, and at studies accomplished that elucidate the role of the artifacts at the history and as a mediatory element of learning. We defend the thesis that the utilization of historical artifacts at teaching activities enables the increasing of the knowledge, the development of competencies and essential abilities to the teacher acting, as well as interact at different areas of the knowledge, that provides a conception of formation where the teacher improves his learning, learning-doing and learning-being. We have adopted a qualitative research approach with a theoretical and pratic study disposition about the elements that contribute to the teachers works at the classroom, emphasizing the role of the Mathematics history at the teacher s formation and as a pedagogical resource at the mathematics classroom; the knowledge, the competencies and abilities of the historical artifacts as an integrative link between the different areas of the knowledge. As result, we emphasize that the proposition of using the MH, through learning activities, at the course of teacher graduation is relevant, because it allows the investigation of ideas that originate the knowledge generated at every social context, considering the contribution of the social and cultural, political and economical aspects at this construction, making easy the dialog among the areas and inside of each one The historical artifact represents a research source that can be deciphered, comprehended, questioned, extracting from it information about knowledge of the past, trace and vestiges of the culture when it was created, consisting of a testimony of a period. These aspects grant to it consideration to be explored as a mediatory element of the learning. The artifacts incorporated at teaching activities of the graduation courses for teachers promote changes on the view about the Mathematics teaching, in view of to privilege the active participation of the student at the construction of his knowledge, at the reflection about the action that has been accomplished, promoting stimulus so the teachers can create their own artifacts, and offer, either, traces linking the Mathematics with others knowledge areas.
Resumo:
This PH.D. thesis is an attempt to show the beginning, evolution and unfolding of the making of a pedagogical work proposal based on culturally-built knowings in the heart of a traditional community, having as one of its starting points the knowings and doings experienced by dish-making women from Maruanum living in the city of Macapá, State of Amapá, Brazil. This proposal is strongly associated with the need we have to think about the nature of (ethnological)-mathematical knowledge generated by particular communities and about the way such knowledge can be discussed, worked out, and validated in learning environments, regardless of the level of instruction and the constraints imposed by government programs and educational institutions. Among its theoretical foundations are studies on instrumental activities that are typical of the Maruanum ceramics and investigative studies from the point of view of ethnomathematics. Methodological development took place with the application of activities, where traditional and instrumental knowledge observed in the production of ceramics had been adapted for and brought into the school environment , participative observation, as well as data collecting and organization techniques, such as interviews, statements, and audio an visual recordings. Analysis of the data collected focused on the relationship between the data-generating potential and the purpose of this study. Our aim is to make and estimate of the potential contributions from local situations and/or problems it would possibly bring to the formative learning of people involved in the educational processes of these communities, with a view to a spatial and temporal transformation of reality
Resumo:
This research argues about the mathematical knowledge built in the tradition of the cassava flour production, seeking to analyse these mathematical knowledge in the perspective of the categories of time and measure, built and practiced in the flour production, located in Serra do Navio and Calçoene, in Amapá - Brazil. The following work discuss the identification and the description of the mathematics during the production activities of the flour, where is presented elements related to generation and transmission of the traditional knowledge, which is the basis for maintenance of the tradition of the flour, characterizing the research as an Ethnomathematic study. The methodological procedures highlight ethnographical techniques and elements that characterize the participating observation. The results obtained showed us that the flour workers articulate some length, area and volume measure due to own and traditionally acquired systems, which is apprehended and countersigned by other kind of culturally established system; thus they relativism the measures systems and the official calendars. And it lifts as one of the main proposal that the academic mathematics and the tradition establish knowledge make conjunction of the both knowledge, that is important for a possible reflection and application in the construction of a pedagogical practice in mathematical education, trying to establish points of socio-economic and cultural mark
Resumo:
The following dissertation has as its main advantage the privilege of visualizing the literacy processes through the angle of the functional perspective, which does not see the literary process as a practice solely based on the decoding of alphabetical codes, and then allows for the opening of ample spaces for the allocation of mathematical skills in the realms of the functional literacy. The main object of this study was to investigate which are the contributions that a sequence of activities and of methodologies developed for the teaching of Geometry could provide for a part of the functional literacy process in mathematics of youngsters and adults of EJA, corresponding to the acquisition or to the improvement of skills related to the orientation capacity. The focus of the analyses consisted in the practice of these activities with the young and adult students of an EJA class belonging to a municipal public school of Natal/RN. The legacies of Paulo Freire about the redimensioning of the role of the teacher, of the students, of the knowledge and of their connections within the teaching-learning process, prevailed in the actions of the methodology implemented in the classroom and, especially, in the establishing of dialogic connections with the students, which directed all the observations and analyses regarding the collected information. The results indicated that the composition of articulations between the teaching of mathematics and the exploration of maps and the earth globe enabled the creation of multidisciplinary learning environments and situations, where we could observe, gradually, the development of procedures and attitudes indicating the evolution of space-visual type skills
Resumo:
This study aims to analyze the implications that the knowledge of an important work for the History of Science, De revolutionibus orbium coelestium , by Nicholas Copernicus, can bring for the formation of Mathematics professors. The study focuses on Book I of Copernicus s work, where, in the final part, is found the Table of the Subtense Straight Lines in a Circle, a true sine table constructed by the author. The study considers two theoretical references, the History of Science and of Mathematics, in the professor s formation searched amongst others in Miguel and Miorm, Brito, Neves and Martins, and Radford, and the necessary teaching knowledge professors mst have, on the basis of Gauthier, Schulman and Imbernón amongst others, through which it is established a net of knowledge grouped in dimensions such as mathematical, psycho pedagogical, cultural and practical diversity, that guide the study analysis. In the search for more necessary elements to enrich the analysis, beyond the theoretical research in Book I, it is carried through, with under graduation pupils, future Math professors, the construction of a sine table following the project used in De revolutionibus . The study still makes a description of the life and work of Nicholas Copernicus, detaching the historical context where the author lived and the conceptions about the Universe existing at that time. The research reveals that the studied work is an important source of culture, able to provide to the Mathematics professor in formation, beyond the conceptual and procedural mathematical knowledge, a cultural knowledge that allows him to be opened to the knowledge of other areas that not his specific area, and so to acquire knowledge about the world history, the development of sciences and of the society
Resumo:
The present paper is focused on pedagogical practices and continued lecturing formation of High School Mathematic teachers. Knowing the essential importance of the teacher at the educational process since he/she is the mediator on knowledge gathering by the scholars and continued formation meaning on that process, we hereby propose to investigate and compare what Math teachers think about their professional role, the kind of continued formation they receive and their development on teacher s knowledge and doing; to gather and compare what do Math teachers know about young people at public and private schools and their demands and as which find out if they link with the way as their students are taught. To develop our comparative research, we chose a qualitative focus and an investigation of ethnographic type. We took as the subject four Math teachers that work with high school 1st and 2nd grades in public and private schools, morning and afternoon shifts and license titles. The research results reveal differences in structural matter between the spaces, but the comparisons between teacher doings and knowledge reveal that the differences refer to the sort of formation and how often do the teachers search for it. Nevertheless, the reports pointed to continued lecturing formation offering and consistence problems and these reflect on their work and on its basis. The knowledge about youth and adolescence, such as theoric and methodological knowledge that lead their practices, are revealers of teachers difficulties in developing their activities according to the target public and nowadays educational demands
Resumo:
This Study inserts in Mathematical Education & Education that search to investigate the (self) formation of formers that gets graduation e pass to graduate others that get graduation and are formers in Mathematical Education. This Is a qualitative search in a perspective from search-formation.The work is formed of four topics. First topic talks about : The self-formation of formers. Second topic: at way of suppositions theorical-methodological from search. Third topic tells over: The life of a former life. Fouth topic A Station called Ubiratan D´Ambrosio created in his reverence and for build all the Knowledge´s Corpus developed by his studies and searches. It´s in sense of come and go from knowledge created at action by mankind to get finality of Transcendency and Survive. Look for to investigate aspects of academical, professional and personal life where are translated in language, thinking and practices oriented for one know-how holistical and transdiciplined in a reflexion, search and the critical it constitute to be a Professor, Teacher, Searcher and Etnomathematic that confered him the merit in 2005 the Prize Félix Klein, that declared Valente (2007), maximum distinction that can receive someone from Mathematical Education. The results point that the narratives of life´s stories are prominences to one re-direction of teach practical in formation´s courses of Mathematical teachers, opening spaces for what the teachers and particularly of Mathematical thinking and take position about your process of formation to be Formers. The Study also given possibilities to propose fourteen stoppages in Station that are beginnings with direction that emerge from studies and searches about the trajectory of life of Professor Ubiratan D´Ambrosio in perspective of re-signify the formative process in education and Mathematical Education
Resumo:
The present work had as principal objective to analyze the, 9th grade students understanding about the solutions of an equation of the 2° degree, using geometric processes of the History of the Mathematics. To do so, the research had as base the elaboration and application of a group of teaching activities, based on Jean Piaget's construtivism. The research consisted of a methodological intervention, that has as subjects the students of a group of 9th grade of the State School José Martins de Vasconcelos, located in the municipal district of Mossoró, Rio Grande do Norte. The intervention was divided in three stages: application of an initial evaluation; development of activities‟ module with emphasis in constructive teaching; and the application of the final evaluation. The data presented in the initial evaluation revealed a low level of the students' understanding with relationship to the calculation of areas of rectangles, resolution of equations of the 1st and 2nd degrees, and they were to subsidize the elaboration of the teaching module. The data collected in the initial evaluation were commented and presented under descriptive statistics form. The results of the final evaluation were analyzed under the qualitative point of view, based on Richard Skemp's theory on the understanding of mathematical concepts. The general results showed a qualitative increase with relationship to the students' understanding on the mathematical concepts approached in the intervention. Such results indicate that a methodology using the previous student‟s knowledge and the development of teaching activities, learning in the construtivist theory, make possible an understanding on the part of the students concerning the thematic proposal
Resumo:
Les connaissances de la tradition et position de la Science dehors pour un non-hiérarchique dialoguez qui frappe pour les distinguer mais ils sont undésavouer inséparable étant donné les compléments ils composent. Cet essai assume la possibilité de ce roi de dialogue dans un place spéciale: la classe. Sur ce qui vient au connaissance de la tradition, le centre remarquable est pour la construction de bateaux du travail manuel, una pratique culturellement déployé dans la ville d'Abaetetuba, dans le État de Pará, Brésil. En revanche, la Science est concentrée par le le contenu d'école a adopté dans l'Ensino Fundamental (École primaire). La construction du dialogue est faite en utilisant des activités de l'enseignement qui accentuez des aspects géométriques (solide, géométrique, angles et symétries) aussi bien que par information qui implique le tableau, poésie, histoire, géographie et physique - les deux inspiré dans le chiffre de bateau résumé dans un CD-ROM interactif. Les activités ont eu lieu dans D'Escola Ensino Pedro Teixeira Fondamental (Abaetetuba-Pa), avec étudiants du 6e niveau (plus spécifiquement avec un groupe de 13 étudiants) d'août à octobre2004. Ethnomathématiques et transdisciplinarité sont le support théorique sous-jacent du projet. Dans résumé, c'est possible pour dire que l'interaction entre Science et Tradition, à travers activités au-delà lesquelles vont le le contenu a restreint à mathématiques d'école, contribuées à,: identifiez le contenu a appris pas sur dans série antérieure; renouveler le rôle joué par école dans ses fonctions didactique pédagogiques; réduire le isolement entre information passée historique et les étudiants présent culturel; indiquer des obstacles à l'érudition des mathématiques intéresser aux aspects cognitifs et behavioristes; et provoquer un participation affective qui rôle principal à la qualité d'apprendre l'école contenu aussi bien que les connaissances de la tradition
Resumo:
The object of study of this thesis is the use of (self)training workshops as a fundamental process for the constitution of the teaching subject in mathematics education. The central purposes of the study were to describe and analyze a learning process of mathematics teachers supported by the training-research methodology, which procedures have been affected with the practice of (self)training workshops as a way of collaborating to the constitution of the teaching subject in Mathematics Education. The survey was conducted with a group of teachers in the city of Nova Cruz, Rio Grande do Norte through a process of continued education realized in the training workshops having as main goal the realization of the group s (self)training sessions in order to lead participants to the extent of their autonomy in their personal and professional transformations. The results obtained in the formative processes have shown the need to develop activities of mathematics teaching as a contribution to overcome the conceptual difficulties of the teachers, apart from their (self)reflections about themselves and the educational processes in which they belong. The results raised some propositions about (self)training workshops that may be incurred in practices to be included in the curriculum frameworks or materialize as a strategy of pedagogical work in training courses for teachers of mathematics. Also, they can constitute an administrative and educational activity to be instituted in the public schools of Basic Education
Resumo:
This work arose from our concerns with the issues of teacher training for early childhood education. From the difficulties encountered as a novice teacher in elementary, we deem important to research training needs of these professionals. Thus, we define the objective of this research to investigate the training needs of novice teachers teaching Early Childhood Education/Elementary school. Our work fits in Educational Research Qualitative Approach, and its construction procedures of the semistructured interview data and document analysis. Our empirical field was made up of schools in the metropolitan region of Natal / RN, offering kindergarten / elementary school. The subjects are five teachers who act as holder of the elementary school class and have 0-3 years of teaching practice, characterizing the second Huberman (2007) as novice teachers. Data analysis, based on principles of content analysis, three themes emerged: Beginner Teaching Professor in Early Childhood Education / Preschool; Reasons explaining the difficulties Faculty / Formative Needs Teaching and Training in Early Childhood Education / Elementary school, from the Training Needs Analysis, with their respective categories, subcategories, contributing to our understanding of the subject matter. The entry into the profession is marked by mixed feelings of euphoria and fear, where there seems to be a "clash" with reality. The difficulties are related to the planning / execution of activities, meet the individual needs of learning and assessment of children. As a strategy to overcome the difficulties the teachers exercise the action-reflection-action in their practices and seek continuous updates in the theoretical and methodological framework of early childhood education. The reasons that define these difficulties may be related to the teacher, school, family, and students of these institutions. In experiencing these difficulties has outlined the need for teacher training, among which stand out studies on ethics in teaching with children, the concept of children and their childhoods, peculiarities of teaching / learning in preschool, toys and legal determinations on early childhood education, multi-language and expressions in early childhood education, specific content areas of knowledge, among others. Furthermore, studies on the theoretical as Piaget, Vigotsky, Maria Carmen Barbosa and Emily Smith. For these professionals to be a professional early childhood education is: like children, be patient and careful, have specific theoretical and practical training for teachers in kindergarten, being able to improvise with seriousness and competence and get updates on continuing education. The surveys, together with the authors and teachers, to confirm our understanding that the training needs of beginners may be related to shortcomings in the initial and continuing education
Resumo:
This paper presents a discussion about the use of the History of Mathematics as an educational resource and conceptual mediator in the formation of teachers who teach mathematics in the years of elementary school. It was a qualitative action method, in order to show the importance of holding workshops of History and Pedagogy of Mathematics as contribution to overcome the conceptual difficulties of teaching and teachers regarding the content covered in the course of education and afterwards they have to teach in the early of elementary school. We assume that understanding the historical, social and cultural comprehension as a conceptual and didactic focus effectively nurture the pursuit of a teaching and learning of mathematics students safe and justified in order to contribute to overcoming the difficulties of teaching and learning usually occurred in the classroom of the early years. In this sense, we organized a study group formed by students of Bachelors in Education and Mathematics at the University of Piauí. We developed five training workshops in History and Pedagogy of Mathematics, with a workload of 20 hours each and four follow-up sessions and advicement, totalizing 180 hours. The purpose of workshops was to develop studies on the History of Mathematics that could support the formation of a conceptual and didactic group with a view to prepare teaching materials and activities based on information drawn from undertaken historical studies .The products designed were used in formation of the group itself and will later be used in training teachers of public school in Teresina, in the form of workshop of History and Pedagogy of Mathematics in order to overcome problems arising from teaching and conceptual this education degree in Education Based on the obtained informations it was possible to suggest new referrals procedural level of education and university extension that may contribute to the reorientation of initial and continuing training of teachers in the early years elementary school
Resumo:
A tese tem como objetivo descrever e analisar características e princípios dos padrões das rendas de bilro de modo a estabelecer relações com a Matemática escolar, principalmente, no que se refere aos tópicos como Geometria, simetria, isometria, área, perímetro, entre outros. Desse modo, elaboramos atividades didáticas, com base na Matemática explorada nos padrões da criação da renda de bilro, visando concretizar um exercício investigatório nas aulas de Matemática, de modo que, sejam estabelecidas relações conceituais entre a prática investigada e os conteúdos da Matemática escolar. Para satisfazer esses objetivos, buscamos apoio metodológico na pesquisa bibliográfica, do tipo documental em catálogos como o da Professora Valdelice Girão (1984) e também o de Dawson (1984). Realizamos também a pesquisa empírica durante as visitas ao Museu do Ceará e ao Centro das Rendeiras na Prainha, em Aquiraz, no Ceará. Para realizar as atividades didáticas, apoiamo-nos em Mendes (2009). Consideramos relevante essa abordagem de ensino porque pressupõe a experiência direta do aprendiz com situações reais vivenciadas, nas quais a abordagem instrucional é centrada no aluno. Desse modo, concluímos que para o ensino de conteúdos como Geometria, simetria, isometria, relação entre perímetro e área, entre outros que são abordados na Educação Básica, os modelos decorrentes da criação renda de bilro e outros modelos já descritos na tradição cearense podem ser usados como artefato cultural na criação de atividades didáticas