991 resultados para Critical Sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rupture in the heterogeneous crust appears to be a catastrophe transition. Catastrophic rupture sensitively depends on the details of heterogeneity and stress transfer on multiple scales. These are difficult to identify and deal with. As a result, the threshold of earthquake-like rupture presents uncertainty. This may be the root of the difficulty of earthquake prediction. Based on a coupled pattern mapping model, we represent critical sensitivity and trans-scale fluctuations associated with catastrophic rupture. Critical sensitivity means that a system may become significantly sensitive near catastrophe transition. Trans-scale fluctuations mean that the level of stress fluctuations increases strongly and the spatial scale of stress and damage fluctuations evolves from the mesoscopic heterogeneity scale to the macroscopic scale as the catastrophe regime is approached. The underlying mechanism behind critical sensitivity and trans-scale fluctuations is the coupling effect between heterogeneity and dynamical nonlinearity. Such features may provide clues for prediction of catastrophic rupture, like material failure and great earthquakes. Critical sensitivity may be the physical mechanism underlying a promising earthquake forecasting method, the load-unload response ratio (LURR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pearson instability was suggested to discuss the onset of Marangoni convection in a liquid layer of large Prandtl number under an applied temperature difference perpendicular to the free surface in the microgravity environment. In this case, the temperature distribution on the curved free surface is nonuniform, and the thermocapillary convection is induced and coupled with the Marangoni convection. In the present paper the effect of volume ratio of the liquid layer on the critical Marangoni convection and the corresponding spatial variation of the convection structure in zero-gravity condition were numerically investigated by two-dimensional model. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of peeling experiments are performed in the present research. One is for the Al film/Al2O3 substrate system with an adhesive layer between the film and the substrate. The other one is for the Cu film/Al2O3 substrate system without adhesive layer between the film and the substrate, and the Cu films are electroplated onto the Al2O3 substrates. For the case with adhesive layer, two kinds of adhesives are selected, which are all the mixtures of epoxy and polyimide with mass ratios 1:1.5 and 1:1, respectively. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling process. The effects of the adhesive layer on the energy release rate are analyzed. Using the experimental results, several analytical criteria for the steady-state peeling based on the bending model and on the two-dimensional finite element analysis model are critically assessed. Through assessment of analytical models, we find that the cohesive zone criterion based on the beam bend model is suitable for a weak interface strength case and it describes a macroscale fracture process zone case, while the two-dimensional finite element model is effective to both the strong interface and weak interface, and it describes a small-scale fracture process zone case. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Channeling/segmentation cracks may arise in the coating subjected to in-plane tensile stress. The interaction between these multiple cracks, say the effect of the spacing between two adjacent cracks oil the behaviors of channels themselves and the interface around the interface corners, attracts wide interest. However, if the spacing is greater than a specific magniture,, namely the Critical Spacing (CS), there should be no interaction between such channeling/segmentation cracks. In this study, file mechanism of the effect of the crack spacing oil the interfacial stress around the interface corner will be Interpreted firstly. Then the existence of the CS will be verified and the relationship between the CS and the so-called stress transfer length Ill coating will be established for plane strain condition. Finally, the dependence of the stress transfer length, simultaneously of the CS, on the sensitive parameters will be investigated with finite element method and expressed with a simple empirical formula. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of a soil slope is usually analyzed by limit equilibrium methods, in which the identification of the critical slip surface is of principal importance. In this study the spline curve in conjunction with a genetic algorithm is used to search the critical slip surface, and Spencer's method is employed to calculate the factor of safety. Three examples are presented to illustrate the reliability and efficiency of the method. Slip surfaces defined by a series of straight lines are compared with those defined by spline curves, and the results indicate that use of spline curves renders better results for a given number of slip surface nodal points comparing with the approximation using straight line segments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La57.6Al17.5(Cu,Ni)(24.9) and La64Al14(Cu,Ni)(22) bulk metallic glasses (BMGs) were prepared by copper-mould casting method. Plastic deformation behavior of the two BMGs at various loading rates was studied by nanoindentation. The results showed that the La57.6Al17.5(Cu,Ni)(24.9) BMG with a glass transition temperature of 423 K exhibited prominent serrated flow at low loading rates, whereas less pronounced serrated flow at high rates during nanoindentation. In contrast, the La64Al14(Cu,Ni)(22) BMG with a glass transition temperature of 401 K exhibited prominent serrated flow at high loading rates. The different rate dependency of serrated flow in the two La-based BMGs is related to the different glass transition temperature, and consequently the degree of viscous flow during indentation at room temperature. A smoother flow occurs in the alloy with relatively lower glass transition temperature, due to the relaxation of stress concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical excavation depth of a jointed rock slope is an important problem in rock engineering. This paper studies the critical excavation depth for two idealized jointed rock slopes by employing a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis which can consider anisotropic and discontinuous deformations due to joints and their orientations. It uses four lump-points at each surface of rock blocks to describe their interactions. The relationship between the critical excavation depth D-s and the natural slope angle alpha, the joint inclination angle theta as well as the strength parameters of the joints c(r) ,phi(r) is analyzed, and the critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is compared. Furthermore, effects of joints on the failure modes are compared between DEM simulations and experimental observations. It is found that the DEM predicts a lower critical excavation depth than the LEM if the joint structures in the rock mass are not ignored.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: