925 resultados para Convex Duality
Resumo:
We study the analytic torsion of a cone over an orientable odd dimensional compact connected Riemannian manifold W. We prove that the logarithm of the analytic torsion of the cone decomposes as the sum of the logarithm of the root of the analytic torsion of the boundary of the cone, plus a topological term, plus a further term that is a rational linear combination of local Riemannian invariants of the boundary. We show that this last term coincides with the anomaly boundary term appearing in the Cheeger Muller theorem [3, 2] for a manifold with boundary, according to Bruning and Ma (2006) [5]. We also prove Poincare duality for the analytic torsion of a cone. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We extract directly (for the first time) the charmed (C = 1) and bottom (B = -1) heavy-baryons (spin 1/2 and 3/2) mass-splittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD, which are less sensitive to the exact value and definition of the heavy quark mass, to the perturbative radiative corrections and to the QCD continuum contributions than the simple ratios commonly used for determining the heavy baryon masses. Noticing that most of the mass-splittings are mainly controlled by the ratio kappa <(S) over bars >/<(d) over bard > of the condensate, we extract this ratio, by allowing 1 sigma deviation from the observed masses of the Xi(c.b) and of the Omega(c). We obtain: kappa = 0.74(3), which improves the existing estimates: kappa = 0.70(10) from light hadrons. Using this value, we deduce M(Omega b) = 6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4 sigma with the one from D0. Predictions of the Xi(Q)` and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 2. Predictions of the hyperfine splittings Omega(Q)* - Omega(Q) and Xi(Q)* - Xi(Q) are also given in Table 3. Starting for a general choice of the interpolating currents for the spin 1/2 baryons, our analysis favours the optimal value of the mixing angle b similar or equal to (-1/5-0) found from light and non-strange heavy baryons. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider pulsating strings in Lunin-Maldacena backgrounds, specifically in deformed Minkowski spacetime and deformed AdS(5) x S(5). We find the relation between the energy and the oscillation number of the pulsating string when the deformation is small. Since the oscillation number is an adiabatic invariant it can be used to explore the regime of highly excited string states. We then quantize the string and look for such a sector. For the deformed Minkowski background we find a precise match with the classical results if the oscillation number is quantized as an even number. For the deformed AdS(5) x S(5) we find a contribution which depends on the deformation parameter.
Resumo:
We study the properties of the vertex operator for the beta-deformation of the superstring in AdS(5) x S(5) in the pure spinor formalism. We discuss the action of supersymmetry on the infinitesimal beta-deformation, the application of the homological perturbation theory, and the relation between the worldsheet description and the spacetime supergravity description. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study the duality of the supersymmetric self-dual and Maxwell-Chern-Simons theories coupled to a fermionic matter superfield, using a master action. This approach evades the difficulties inherent to the quartic couplings that appear when matter is represented by a scalar superfield. The price is that the spinorial matter superfield represents a unusual supersymmetric multiplet, whose main physical properties we also discuss. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we study fermion perturbations in four-dimensional black holes of string theory, obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The Dirac equation for the massless neutrino field, after conformal re-scaling of the metric, is written as a wave equation suitable to study the time evolution of the perturbation. We perform a numerical integration of the evolution equation, and with the aid of Prony fitting of the time-domain profile, we calculate the complex frequencies that dominate the quasinormal ringing stage, and also determine these quantities by the semi-analytical sixth-order WKB method. We also find numerically the decay factor of fermion fields at very late times, and show that the falloff is identical to those showing for massless fields in other four-dimensional black hole spacetimes.
Resumo:
We consider (for the first time) the ratios of doubly heavy baryon masses (spin 3/2 over spin 1/2 and SU(3) mass-splittings) using double ratios of sum rules (DRSR), which are more accurate than the usual simple ratios often used in the literature for getting the hadron masses. In general, our results agree and compete in precision with potential model predictions. In our approach, the alpha(s) corrections induced by the anomalous dimensions of the correlators are the main sources of the Xi(QQ)*-Xi(QQ) mass-splittings, which seem to indicate a 1/M(Q) behaviour and can only allow the electromagnetic decay Xi(QQ)* -> Xi(QQ) + gamma but not to Xi(QQ) + pi. Our results also show that the SU(3) mass-splittings are (almost) independent of the spin of the baryons and behave approximately like 1/M(Q), which could be understood from the QCD expressions of the corresponding two-point correlator. Our results can improved by including radiative corrections to the SU(3) breaking terms and can be tested, in the near future, at Tevatron and LHCb. (C) 2010 Published by Elsevier B.V.
Resumo:
We use the deformed sine-Gordon models recently presented by Bazeia et al [1] to take the first steps towards defining the concept of quasi-integrability. We consider one such definition and use it to calculate an infinite number of quasi-conserved quantities through a modification of the usual techniques of integrable field theories. Performing an expansion around the sine-Gordon theory we are able to evaluate the charges and the anomalies of their conservation laws in a perturbative power series in a small parameter which describes the ""closeness"" to the integrable sine-Gordon model. We show that in the case of the two-soliton scattering the charges, up to first order of perturbation, are conserved asymptotically, i.e. their values are the same in the distant past and future, when the solitons are well separated. We indicate that this property may hold or not to higher orders depending on the behavior of the two-soliton solution under a special parity transformation. For closely bound systems, such as breather-like field configurations, the situation however is more complex and perhaps the anomalies have a different structure implying that the concept of quasi-integrability does not apply in the same way as in the scattering of solitons. We back up our results with the data of many numerical simulations which also demonstrate the existence of long lived breather-like and wobble-like states in these models.
Resumo:
The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.
Resumo:
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.
Resumo:
The focus of study in this paper is the class of packing problems. More specifically, it deals with the placement of a set of N circular items of unitary radius inside an object with the aim of minimizing its dimensions. Differently shaped containers are considered, namely circles, squares, rectangles, strips and triangles. By means of the resolution of non-linear equations systems through the Newton-Raphson method, the herein presented algorithm succeeds in improving the accuracy of previous results attained by continuous optimization approaches up to numerical machine precision. The computer implementation and the data sets are available at http://www.ime.usp.br/similar to egbirgin/packing/. (C) 2009 Elsevier Ltd, All rights reserved.
Resumo:
This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that leads to fully smooth subproblems. We first enhance the existing theory to show that our approach is globally convergent in both the primal and dual spaces when applied to convex problems. We then present an extensive computational evaluation using the CUTE test set, showing that some aspects of our approach are promising, but some are not. These conclusions in turn lead to additional computational experiments suggesting where to next focus our theoretical and computational efforts.
Resumo:
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.
Resumo:
Given a fixed set of identical or different-sized circular items, the problem we deal with consists on finding the smallest object within which the items can be packed. Circular, triangular, squared, rectangular and also strip objects are considered. Moreover, 2D and 3D problems are treated. Twice-differentiable models for all these problems are presented. A strategy to reduce the complexity of evaluating the models is employed and, as a consequence, instances with a large number of items can be considered. Numerical experiments show the flexibility and reliability of the new unified approach. (C) 2007 Elsevier Ltd. All rights reserved.