Exact vortex solutions in a CP(N) Skyrme-Faddeev type model
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves. FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq |
Identificador |
JOURNAL OF HIGH ENERGY PHYSICS, n.10, 2010 1126-6708 http://producao.usp.br/handle/BDPI/29863 10.1007/JHEP10(2010)008 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Journal of High Energy Physics |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #Integrable Field Theories #Integrable Equations in Physics #Solitons Monopoles and Instantons #Integrable Hierarchies #YANG-MILLS THEORY #SINE-GORDON EQUATION #INTEGRABLE THEORIES #MAGNETIC MONOPOLES #SPACES #FIELD #VARIABLES #DIMENSION #DUALITY #WAVES #Physics, Particles & Fields |
Tipo |
article original article publishedVersion |