The analytic torsion of a cone over an odd dimensional manifold


Autoria(s): HARTMANN, L.; SPREAFICO, M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

We study the analytic torsion of a cone over an orientable odd dimensional compact connected Riemannian manifold W. We prove that the logarithm of the analytic torsion of the cone decomposes as the sum of the logarithm of the root of the analytic torsion of the boundary of the cone, plus a topological term, plus a further term that is a rational linear combination of local Riemannian invariants of the boundary. We show that this last term coincides with the anomaly boundary term appearing in the Cheeger Muller theorem [3, 2] for a manifold with boundary, according to Bruning and Ma (2006) [5]. We also prove Poincare duality for the analytic torsion of a cone. (C) 2010 Elsevier B.V. All rights reserved.

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[2009/15145-9]

FAPESP[2008/57607-6]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

JOURNAL OF GEOMETRY AND PHYSICS, v.61, n.3, p.624-657, 2011

0393-0440

http://producao.usp.br/handle/BDPI/28808

10.1016/j.geomphys.2010.11.011

http://dx.doi.org/10.1016/j.geomphys.2010.11.011

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Journal of Geometry and Physics

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Zeta determinants #Analytic torsion #Cone #RIEMANNIAN MANIFOLDS #R-TORSION #DETERMINANTS #OPERATORS #SPACES #Mathematics, Applied #Physics, Mathematical
Tipo

article

original article

publishedVersion