The analytic torsion of a cone over an odd dimensional manifold
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
We study the analytic torsion of a cone over an orientable odd dimensional compact connected Riemannian manifold W. We prove that the logarithm of the analytic torsion of the cone decomposes as the sum of the logarithm of the root of the analytic torsion of the boundary of the cone, plus a topological term, plus a further term that is a rational linear combination of local Riemannian invariants of the boundary. We show that this last term coincides with the anomaly boundary term appearing in the Cheeger Muller theorem [3, 2] for a manifold with boundary, according to Bruning and Ma (2006) [5]. We also prove Poincare duality for the analytic torsion of a cone. (C) 2010 Elsevier B.V. All rights reserved. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[2009/15145-9] FAPESP[2008/57607-6] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
JOURNAL OF GEOMETRY AND PHYSICS, v.61, n.3, p.624-657, 2011 0393-0440 http://producao.usp.br/handle/BDPI/28808 10.1016/j.geomphys.2010.11.011 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Journal of Geometry and Physics |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Zeta determinants #Analytic torsion #Cone #RIEMANNIAN MANIFOLDS #R-TORSION #DETERMINANTS #OPERATORS #SPACES #Mathematics, Applied #Physics, Mathematical |
Tipo |
article original article publishedVersion |