Global minimization using an Augmented Lagrangian method with variable lower-level constraints
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented. PRONEX-Optimization PRONEX-Optimization[PRONEX-CNPq/FAPERJ E-26/171.164/2003-APQ1] FAPESP[06/53768-0 and 06/51827-9] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq[PROSUL 490333/2004-4] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) National Science Foundation (NSF) National Science Foundation (NSF) National Institute of Health (NIH)[R01 GM52032] National Institutes of Health (NIH) |
Identificador |
MATHEMATICAL PROGRAMMING, v.125, n.1, p.139-162, 2010 0025-5610 http://producao.usp.br/handle/BDPI/30364 10.1007/s10107-009-0264-y |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Mathematical Programming |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #OPTIMIZATION ALGORITHM GOP #RLT-BASED APPROACH #ALPHA-BB #NONCONVEX NLPS #PROGRAMMING-PROBLEMS #CLUSTERING PROBLEM #QUALIFICATION #SATISFACTION #DUALITY #Computer Science, Software Engineering #Operations Research & Management Science #Mathematics, Applied |
Tipo |
article original article publishedVersion |