Global minimization using an Augmented Lagrangian method with variable lower-level constraints


Autoria(s): BIRGIN, E. G.; FLOUDAS, C. A.; MARTINEZ, J. M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.

PRONEX-Optimization

PRONEX-Optimization[PRONEX-CNPq/FAPERJ E-26/171.164/2003-APQ1]

FAPESP[06/53768-0 and 06/51827-9]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq[PROSUL 490333/2004-4]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

National Science Foundation (NSF)

National Science Foundation (NSF)

National Institute of Health (NIH)[R01 GM52032]

National Institutes of Health (NIH)

Identificador

MATHEMATICAL PROGRAMMING, v.125, n.1, p.139-162, 2010

0025-5610

http://producao.usp.br/handle/BDPI/30364

10.1007/s10107-009-0264-y

http://dx.doi.org/10.1007/s10107-009-0264-y

Idioma(s)

eng

Publicador

SPRINGER

Relação

Mathematical Programming

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #OPTIMIZATION ALGORITHM GOP #RLT-BASED APPROACH #ALPHA-BB #NONCONVEX NLPS #PROGRAMMING-PROBLEMS #CLUSTERING PROBLEM #QUALIFICATION #SATISFACTION #DUALITY #Computer Science, Software Engineering #Operations Research & Management Science #Mathematics, Applied
Tipo

article

original article

publishedVersion