870 resultados para 1H NMR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Química - IBILCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Casearia genus (Salicaceae) is well known because of the medicinal use of its species. Among them, a noteworthy one is the C. sylvestris specie because it already has studies concerning its antiproliferative and/or cytotoxic activity in tumor cells. Furthermore, this specie is popularly used against snake bites, in gastric ulcers treatment and as anti-inflammatory. As well as this, there are other species from this same genus which have been poorly studied, such as the following species: C. decandra, C. grandiflora, C. javitensis, C. arborea, C. lasiophylla and C. ulmifolia. However, several biological activities have been reported for them. In this context, the aim of this project, besides of contributing to the Casearia genus studies, is to study those six species through the analysis and documentation of their leaves' chemical composition (aqueous, ethanolic and hexanic extracts), using analytical separation techniques coupled with spectroscopic techniques, such as UHPLC-DAD, GC-MS and NMR 1H, which will assist the identification of new secondary metabolites in this genus. Moreover, another goal of this present work is aiming the bioprospection of substances with medicinal and economical potential and finally promote the systematic study of some biological activities, such as antimicrobial and cytotoxicity bioassays. A wide variety of metabolites was identified in those three types of extracts, being most of them detected for the first time in Casearia genus, highlighting C. lasiophylla and C. decandra for featuring antimicrobial activity against Staphylococcus aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Casearia genus (Salicaceae) is well known because of the medicinal use of its species. Among them, a noteworthy one is the C. sylvestris specie because it already has studies concerning its antiproliferative and/or cytotoxic activity in tumor cells. Furthermore, this specie is popularly used against snake bites, in gastric ulcers treatment and as anti-inflammatory. As well as this, there are other species from this same genus which have been poorly studied, such as the following species: C. decandra, C. grandiflora, C. javitensis, C. arborea, C. lasiophylla and C. ulmifolia. However, several biological activities have been reported for them. In this context, the aim of this project, besides of contributing to the Casearia genus studies, is to study those six species through the analysis and documentation of their leaves' chemical composition (aqueous, ethanolic and hexanic extracts), using analytical separation techniques coupled with spectroscopic techniques, such as UHPLC-DAD, GC-MS and NMR 1H, which will assist the identification of new secondary metabolites in this genus. Moreover, another goal of this present work is aiming the bioprospection of substances with medicinal and economical potential and finally promote the systematic study of some biological activities, such as antimicrobial and cytotoxicity bioassays. A wide variety of metabolites was identified in those three types of extracts, being most of them detected for the first time in Casearia genus, highlighting C. lasiophylla and C. decandra for featuring antimicrobial activity against Staphylococcus aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High pressure NMR spectroscopy has developed into an important tool for studying conformational equilibria of proteins in solution. We have studied the amide proton and nitrogen chemical shifts of the 20 canonical amino acids X in the random-coil model peptide Ac-Gly-Gly-X-Ala-NH2, in a pressure range from 0.1 to 200 MPa, at a proton resonance frequency of 800 MHz. The obtained data allowed the determination of first and second order pressure coefficients with high accuracy at 283 K and pH 6.7. The mean first and second order pressure coefficients <B-1(15N)> and <B-2(15N)> for nitrogen are 2.91 ppm/GPa and -2.32 ppm/GPa(2), respectively. The corresponding values <B-1(1H)> and <B-2(1H)> for the amide protons are 0.52 ppm/GPa and -0.41 ppm/GPa(2). Residual dependent (1)J(1H15N)-coupling constants are shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of heavy metal oxide (HMO) glasses with composition 26.66B(2)O(3)-16GeO(2)-4 Bi2O3-(53.33-x)PbO-xPbF2 (0 <= x <= 40) were prepared and characterized with respect to their bulk (glass transition and crystallization temperatures, densities, molar volumes) and spectroscopic properties. Homogeneous glasses are formed up to x = 30, while crystallization of beta-PbF2 takes place at higher contents. Substitution of PbO by PbF2 shifts the optical band gap toward higher energies, thereby extending the UV transmission window significantly toward higher frequencies. Raman and infrared absorption spectra can be interpreted in conjunction with published reference data. Using B-11 and F-19 high-resolution solid state NMR as well as B-11/F-19 double resonance methodologies, we develop a quantitative structural description of this material. The fraction of four-coordinate boron is found to be moderately higher compared to that in glasses with the same PbO/B2O3 ratios, suggesting some participation of PbF2 in the network transformation process. This suggestion is confirmed by the F-19 NMR spectra. While the majority of the fluoride ions is present as ionic fluoride, similar to 20% of the fluorine inventory acts as a network modifier, resulting in the formation of four-coordinate BO3/2F- units. These units can be identified by F-19{B-11} rotational echo double resonance and B-11{F-19} cross-polarization magic angle spinning (CPMAS) data. These results provide the first unambiguous evidence of B-F bonding in a PbF2-modified glass system. The majority of the fluoride ions are found in a lead-dominated environment. F-19-F-19 homonuclear dipolar second moments measured by spin echo decay spectroscopy are quantitatively consistent with a model in which these ions are randomly distributed within the network modifier subdomain consisting of PbO, Bi2O3, and PbF2. This model, which implies both the features of atomic scale mixing with the network former borate species and some degree of fluoride ion clustering is consistent with all of the experimental data obtained on these glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that heparin induces vascular relaxation via integrin-dependent nitric oxide (NO)-mediated activation of the muscarinic receptor. The aim of this study was to identify the structural features of heparin that are necessary for the induction of vasodilatation. To address this issue, we tested heparin from various sources for their vasodilatation activities in the rat aorta ring. Structural and chemical characteristics of heparin, such as its molecular weight and substitution pattern, did not show a direct correlation with the vasodilation activity. Principal component analysis (PCA) of circular dichroism (CD), 1H-nuclear magnetic resonance (NMR) and vasodilation activity measurements confirmed that there is no direct relationship between the physico-chemical nature and vasodilation activity of the tested heparin samples. To further understand these observations, unfractionated heparin (UFH) from bovine intestinal mucosa, which showed the highest relaxation effect, was chemically modified. Interestingly, non-specific O- and N-desulfation of heparin reduced its anticoagulant, antithrombotic, and antihemostatic activities, but had no effect on its ability to induce vasodilation. On the other hand, chemical reduction of the carboxyl groups abolished heparin-induced vasodilation and reduced the affinity of heparin toward the extracellular matrix (ECM). In addition, dextran and dextran sulfate (linear non-sulfated and highly sulfated polysaccharides, respectively) did not induce significant relaxation, showing that the vasodilation activity of polysaccharides is neither charge-dependent nor backbone unspecific. Our results suggest that desulfated heparin molecules may be used as vasoactive agents due to their low side effects. J. Cell. Biochem. 113: 13591367, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical and physical properties of a Brazilian heavy oil submitted to plasma treatment were investigated by H-1 low-and high-field nuclear magnetic resonance (NMR) combined to the characterization of rheological properties, thermogravimetry and measurement of basic sediments and water (BSW) content. The crude oil was treated in a dielectric barrier discharge plasma reactor, using natural gas, CO2 or H-2 as working gas. The results indicated a large drop in the water content of the plasma-treated samples as compared to the crude oil, giving rise to a reduction in the viscosity. No significant chemical change was produced in the oil portion itself, as observed by H-1 NMR. The water contents determined by H-1 low-field NMR analyses agreed well with those obtained by BSW, indicating the low-field NMR methods as a useful tool for following the effects of plasma treatments on heavy oils, allowing the separation of the effects caused on the water and oil fractions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method for the synthesis of triazoles containing selenium and tellurium was accomplished via a CuCAAC reaction between organic azides and a terminal triple bond, generated by in situ deprotection of the silyl group. The reaction tolerates alkyl and arylazides, with alkyl and aryl substituents directly bonded to the chalcogen atom. The products were readily functionalized by a nickel-catalyzed Negishi cross-coupling reaction, furnishing the aryl-heteroaryl products at the 4-position in good yields. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present an implementation of quantum logic gates and algorithms in a three effective qubits system, represented by a (I = 7/2) NMR quadrupolar nuclei. To implement these protocols we have used the strong modulating pulses (SMP) and the various stages of each implementation were verified by quantum state tomography (QST). The results for the computational base states, Toffolli logic gates, and Deutsch-Jozsa and Grover algorithms are presented here. Also, we discuss the difficulties and advantages of implementing such protocols using the SMP technique in quadrupolar systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a low-cost benchtop time-domain NMR (TD-NMR) spectrometer to monitor copper electrodeposition in situ is presented. The measurements are based on the strong linear correlation between the concentration of paramagnetic ions and the transverse relaxation rates (R-2) of the solvent protons Two electrochemical NMR (EC-NMR) cells were constructed and applied to monitor the Cu2+ concentration during the electrodeposition reaction. The results show that TD-NMR relaxometry using the Carr-Purcell-Meiboom-Gill pulse sequence can be a very fast, simple, and efficient technique to monitor, in real time, the variation in the Cu2+ concentration during an electrodeposition reaction. This methodology can also be applied to monitor the electrodeposition of other paramagnetic ions, such as Ni2+ and Cr3+, which are commonly used in electroplating.