987 resultados para electric field domains


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photoreflectance (PR) has been used to study surface electronic properties (electric field, Fermi level pinning, and density of surface states) of undoped-n(+) (UN+) GaAs treated in the solution of ammonium sulfide in isopropanol. Complex Fourier transformation (CFT) of PR spectra from passivated surface shows that the sulfur overlay on GaAs surface makes no contribution to Franz-Keldysh oscillations (FKOs). The barrier height measured by PR is derived from surface states directly, rather than the total barrier height, which includes the potentials derived from Ga-S and As-S dipole layers. Comparing with native oxidated surface, the passivation leads to 80 meV movement of surface Fermi level towards the conduction band minimum, and reduction by more than one order in density of surface states. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the electronic energy levels and probability distribution of vertically stacked self-assembled InAs quantum discs system in the presence of a vertically applied electric field. This field is found to increase the splitting between the symmetric and antisymmetric levels for the same angular momentum. The field along the direction from one disc to another affects the electronic energy levels similarly as that in the opposite direction because the two discs are identical. It is obvious from our calculation that the probability of finding an electron in one disc becomes larger when the field points from this disc to the other one.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the oscillator strengths of the optical transitions of the vertically stacked self-assembled InAs quantum discs. The oscillator strengths change evidently when the two quantum discs are far apart from each other. A vertically applied electric held affects the oscillator strengths severely, while the oscillator strengths change slowly as the radius of one disc increases. We also studied the excitonic energy of the system, including the Coulomb interaction. The excitonic energy increases with the increasing radius of one disc, but decreases as a vertically applied electric field increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots (QDs) have been fabricated by depositing 1.6, 1.8, 2.0 and 2.5 monolayer (ML) InAs on surfaces of the undoped-n(+) (UN+) type GaAs structure. Room temperature contactless electroreflectance (CER) was employed to study the built-in electric field and the surface Fermi level pinning of these QD-covered UN+ GaAs samples. The CER results show that 1.6 ML InAs QDs on GaAs do not modify the Fermi level, whereas for samples with more than 1.6 ML InAs coverage, the surface Fermi level is moved to the valence band maximum of GaAs by about 70 meV (which is independent of the InAs deposition thickness) compared to bare GaAs. It is concluded that the modification of InAs coverage on the Fermi level on the GaAs surface is due to the QDs, rather than to the wetting layer. (C) 2003 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report the fabrication of Si-based double-hetero-epitaxial silicon on insulator (SOI) structure Si/gamma-Al2O3/Si. Firstly, single crystalline gamma-Al2O3(100) insulator films were grown epitaxially on Si(100) using the sources of TMA (Al(CH3)(3)) and O-2 by very low-pressure chemical vapor deposition. Afterwards, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a chemical vapor deposition method similar to the silicon on sapphire epitaxial growth. The Si/gamma-Al2O3/Si SOL materials are characterized in detail by reflect high-energy electron diffraction, X-ray diffraction and Auger energy spectrum (AES) techniques. The insulator layer of gamma-Al2O3 has an excellent dielectric property. The leakage current is less than 1 x 10(-10) A/cm(2) when the electric field is below 1.3 MV/ cm. The Si film grown on gamma-Al2O3/Si epi-substrates was single crystalline. Meanwhile, the AES depth profile of the SOL structure shows that the composition of gamma-Al2O3 film is uniform, and the carbon contamination is not observed. Additionally, the gamma-Al2O3/Si epi-substrates are suitable candidates as a platform for a variety of active layers such as GaN, SiC and GeSi. It shows a bright future for microelectronic and optical electronics applications. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have obtained the parameter-phase diagram, which unambiguously defines the parameter region for the use of InAs/GaAs quantum dot as two-level quantum system in quantum computation in the framework of the effective-mass envelope function theory. Moreover, static electric field is found to efficiently prolong decoherence time. As a result, decoherence time may reach the order of magnitude of milli-seconds as external static electric field goes beyond 20 kV/cm if only vacuum fluctuation is taken as the main source for decoherence. Our calculated results are useful for guiding the solid-state implementation of quantum computing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Excitonic states in AlxGa1-xN/GaN quantum wells (QWs) are studied within the framework of effective-mass theory. Spontaneous and piezoelectric polarizations are included and their impact on the excitonic states and optical properties are studied. We witnessed a significant blue shift in transition energy when the barrier width decreases and we attributed this to the redistribution of the built-in electric field between well layers and barrier layers. For the exciton the binding energies, we found in narrow QWs that there exists a critical value for barrier width, which demarcates the borderline for quantum confinement effect and the quantum confined Stark effect. Exciton and free carrier radiative lifetimes are estimated by simple argumentation. The calculated results suggest that there are efficient non-radiative mechanisms in narrow barrier QWs. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time evolution of the quantum mechanical state of an electron is calculated in the framework of the effective-mass envelope function theory for an InAs/GaAs quantum dot. The results indicate that the superposition state electron density oscillates in the quantum dot, with a period on the order of femtoseconds. The interaction energy E-ij between two electrons located in different quantum dots is calculated for one electron in the ith pure quantum state and another in the jth pure quantum state. We find that E-11]E-12]E-22, and E-ij decreases as the distance between the two quantum dots increases. We present a parameter-phase diagram which defines the parameter region for the use of an InAs/GaAs quantum dot as a two-level quantum system in quantum computation. A static electric field is found to efficiently prolong the decoherence time. Our results should be useful for designing the solid-state implementation of quantum computing. (C) 2001 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A theoretical model accounting for the macropolarization effects in wurtzite III-V nitrides quantum wells (QWs) is presented. Energy dispersions and exciton binding energies are calculated within the framework of effective-mass theory and variational approach, respectively. Exciton-associated transitions (EATs) are studied in detail. An energy redshift as high as 450 meV is obtained in Al0.25GaN0.75/GaN QWs. Also, the abrupt reduction of optical momentum matrix elements is derived as a consequence of quantum-confined Stark effects. EAT energies are compared with recent photoluminescence (PL) experiments and numerical coherence is achieved. We propose that it is the EAT energy, instead of the conduction-valence-interband transition energy that is comparable with the PL energy. To restore the reduced transition rate, we apply an external electric field. Theoretical calculations show that with the presence of the external electric field the optical matrix elements for EAT increase 20 times. (C) 2001 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InxGa1-xAs/AlyGa1-yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength (3-5 mum) infrared detectors are fabricated. The components display photovoltaic-type photocurrent response as well as the bias-controlled modulation of the peak wavelength of the main response, which is ascribed to the Stark shifts of the intersubband transitions from the local ground states to the extended first excited states in the quantum wells, at the 3-5.3 mum infrared atmospheric transmission window. The blackbody detectivity (D-bb*) of the detectors reaches to about 1.0x10(10) cm Hz(1/2)/W at 77 K under bias of +/-7 V. By expanding the electron wave function in terms of normalized plane wave basis within the framework of the effective-mass envelope-function theory, the linear Stark effects of the intersubband transitions between the ground and first excited states in the asymmetric step well are calculated. The obtained results agree well with the corresponding experimental measurements. (C) 2001 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relations between the gain factor, defined as the ratio of modal gain to material gain, and the optical confinement factor are discussed for the TE and TM modes in slab waveguides. For the TE modes, the gain factor is larger than the optical confinement factor, due to the zigzag propagation of the modal light ray in the core layers. For the TM modes, the existence of a nonzero electric field in the propagation direction results in a more complicated relation of the gain factor and the confinement factor. For an air-Si-SiO2 strong slab waveguide, the numerical results show that the modal gain can be larger than the material gain and the higher-order transverse mode can have an even larger modal gain than the fundamental mode, The efficiency of waveguiding photodetectors can be improved by applying the modal gain or loss characteristics in strong waveguides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two sensitive polarized spectroscopies, reflectance difference spectroscopy and photocurrent difference spectroscopy, are used to study the characteristic of the in-plane optical anisotropy in the symmetric and the asymmetric (001) GaAs/Al(Ga)As superlattices (SLs). The anisotropy spectra of the symmetric and the asymmetric SLs show significant difference: for symmetric ones, the anisotropies of the 1HH-->1E transition (1H1E) and 1L1E are dominant, and they are always approximately equal and opposite; while for asymmetric ones, the anisotropy of 1H1E is much less than that of 1L1E and 2H1E, and the anisotropy of 3H2E is very strong. The calculated anisotropy spectra within the envelope function model agree with the experimental results, and a perturbation approach is used to understand the role of the electric field and the interface potential in the anisotropy. (C) 2001 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A trilayer asymmetric superlattice, Si/Si1-xGex/Si1-yGey, is proposed, in which the broken inversion symmetry makes the microstructure optically biaxial; in particular, inequivalent interfaces in this heterostructure may cause a polarization ratio as large as about 2.5% in the absence of an external field. The electronic structure and absorption spectra for two types of trilayer superlattice with different parameters are calculated by use of the tight-binding model; the findings indicate the importance of the carrier confinement for the anisotropy value. The effect of external electric field on the optical anisotropy for such structures has also been discussed, and a Pockels coefficient of 10-9 cm V-1 estimated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrolyte electroreflectance spectra of the near-surface strained-layer In0.15Ga0.85As/GaAs double single-quantum-well electrode have been studied at different biases in non-aqueous solutions of ferrocene and acetylferrocene. The optical transitions, the Franz-Keldysh oscillations (FKOs) and the quantum confined Stark effects (QCSE) of In0.15Ga0.85As/GaAs quantum well electrodes are analyzed. Electric field strengths at the In0.15Ga0.85As/GaAs interface are calculated in both solutions by a fast Fourier transform analysis of FKOs. A dip is exhibited in the electric field strength versus bias (from 0 to 1.2 V) curve in ferrocene solution. A model concerning the interfacial tunneling transfer of electrons is used to explain the behavior of the electric field. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The polyetherketone (PEK-c) guest-host polymer thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. The polymer films were investigated with in situ second-harmonic generation (SHG) measurement. The corona poling temperature was optimized by the temperature dependence of the in situ SHG signal intensity under the poling electric field applying. The temporal and temperature stability of the second-order properties of the poled polymer film were measured by the in situ SHG signal intensity probing. The second-order NLO coefficient chi ((2))(33) = 32.65 pm/V at lambda = 1064 nm was determined by using the Makel fringe method after poling under the optimal poling condition. The dispersion of the NLO coefficient of the guest-host polymer system was determined by the measured value of chi ((2))(33) at 1064 nm and the two-level model.