987 resultados para cosmologia, clustering, AP-test
Resumo:
Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells and GaInNAs epilayers grown on GaAs substrate show an apparent "S-shape" temperature-dependence of the of dominant luminescence peak. At low temperature and weak excitation conditions, a PL peak related to nitrogen cluster-induced bound states can be well resolved in the PL spectra. It displays a remarkable red shift of up to 60 meV and is thermally quenched below 100 K with increasing temperature, being attributed to N-cluster induced bound states. The indium incorporation exhibits significant effect on the cluster formation. The rapid thermal annealing treatment at 750 C can essentially remove the bound states-induced peak.
Resumo:
The open-short-load (OSL) method is very simple and widely used, for one-port test fixture calibration. In this paper, this method. is extended to the two-port calibration of test fixtures for the first time. The problem of phase uncertainty arising in this application has been solved. The comparison between our results and those obtained with the short-open-load-thru (SOLT) method shows that the method established is accurate enough for practical applications.
Resumo:
The problem of frequency limitation arising in calibration of the test fixtures is investigated in this paper. It is found that at some frequencies periodically, the accuracy of the methods becomes very low, and. the denominators of the expressions of the required S-parameters approach zero. This conclusion can be drawn whether-the test fixtures, are symmetric or not. A good agreement between theory and experiment is obtained.
Resumo:
Scan test can be inserted around hard IP cores that have not been designed with DFT approaches. An 18x18 bits Booth Coding-Wallace Tree multiplier has been designed with full custom approach with 0.61 m CMOS technology. When we reuse the multiplier in another chip, scan chain has been inserted around it to increase the fault coverage. After scan insertion, the multiplier needs 4.7% more areas and 24.4% more delay time, while the fault coverage reaches to 95%.
Resumo:
Tianjin University of Technology
Resumo:
沙蜥属(Phrynocephalus)的卵胎生类群主要分布在我国青藏高原,包括南疆沙蜥(P. forsythii)、西藏沙蜥(P. theobaldi)、红尾沙蜥(P. erythrurus)、贵德沙蜥(P. putjatia)和青海沙蜥(P. vlangalii)。其卵胎生生殖方式适应了高寒生境,与青藏高原隆升有关。纵观前人的研究,上述几种卵胎生沙蜥的分类、系统发育关系以及生物地理都还存在疑问。本文研究了分布在若尔盖湿地的青海沙蜥红原亚种(P. v hongyuanensis)以及分布在黄河上游其它地区青海沙蜥种组的地理分布格局,并探讨了其形成机制。 青海沙蜥在黄河上游主要分布于若尔盖湿地以及青海湖周边地区。若尔盖湿地青海沙蜥红原亚种的生境由于沼泽的形成被切割成不连续的斑块,通过遗传分析可以推测这种特殊生境对它们遗传结构的影响。其次,贵德沙蜥、青海沙蜥的青海湖周边各居群以及若尔盖湿地居群之间的系统地理格局还未见报道。因此本文以居群为单位,将它们作为一个复合体,通过系统地理研究,可以了解其种群遗传结构,据此分析相关的地质历史事件对其分布的影响。主要结果如下: 1. 若尔盖湿地青海沙蜥红原亚种的种群遗传结构: 共研究了三个地理单元(红原(HY)、辖曼(XM)、玛曲(MQ))的7个采集点的72个个体。所有ND4-tRNALeu序列比对得到785 bp的片断,定义了9种单倍型。结果显示总的核苷酸多样性较低,单倍型多样性较高。分子变异分析(AMOVA)显示3个单元间差异显著(P<0.01),遗传变异主要存在于地理单元间,占62.61%。除MQ单元,XM各居群与HY居群混杂在一起,单倍型网络图没有显示出单倍型和地理位置的对应关系。XM单元单倍型的不配对分布(Mismatch distribution)为明显左移的单峰,且Fu’s Fs test为负值,表明XM单元可能经历了近期种群扩张,有足够的时间积累单倍型的多态性,还不足以大幅提高核苷酸多样性,这是其单倍型多样性较高和核苷酸多样性较低的原因。MQ单元遗传多样性低而与其他单元显著分化,推测这与3万年前黄河在若尔盖玛曲之间贯通有关。近期沼泽的形成对XMb居群的隔离时间短,使得其遗传多样性低但还不足以形成大的遗传差异。无论黄河的贯通还是沼泽的形成其隔离形成的时间都不长,其作用改变了单倍型出现的频率,也出现了一些特有单倍型,但共享单倍型还广泛存在,还不足以使得不同居群之间形成较大的遗传距离。 2. 黄河上游青海沙蜥种组的分布格局与地史过程的关系: 黄河上游青海沙蜥种组包括贵德沙蜥、青海沙蜥指名亚种的青海湖周边各居群、青海沙蜥红原亚种若尔盖湿地居群、以及青海湖以西的部分居群(序列由Genbank下载获得),总计22个居群189个样品。所有ND4-tRNALeu序列比对得到703个位点,定义了39种单倍型。以南疆沙蜥为外群构建的贝叶斯树以及MP法构建的无根树,都分为A、B两大组。其中A包括若尔盖湿地居群以及玛多居群(A1)、青海湖以西的居群和兴海居群(A2)、西藏沙蜥;B包括青海湖以南的居群和天祝居群(B1)、青海湖以东北的居群(B2)。单倍型网络图分别对应了系统发育树上的各支。按照系统发育结果分组进行分子变异分析,得到组间变异占88.63%,各组间差异显著(P=0.000)。种群遗传结构分析得到,A1和B2可能经历了近期的种群扩张,前者扩张时间约为0.105-0.189 Ma B.P.(million years before present),后者为0.057-0.102 Ma B.P.,可能与末次间冰期的气候变暖有关。A2和B1对应的两个地理单元都具有较强的种群遗传结构,较为稳定。 青海沙蜥种组A、B两大支之间遗传距离大,分化明显,分化大约发生在4.29-2.38 Ma B.P.,推测青藏运动的A幕运动后复杂的地形变化可能是它们产生分化的原因。B1和B2分化大约发生在1.73-0.96 Ma B.P.,这与湟水流域构造运动发生的时间相符。在早、中更新世时期,B1支内部各居群可能有交流,中更新世末共和盆地出现的抬升以及河流溯源改道等事件可能是引起这支内部多个单倍型丢失的原因。A1、A2支的分化可能与倒数第三次冰期降临之后气候变冷、阿尼玛卿山的大冰帽有关。 The viviparous group of genus Phrynocephalus is mainly distributed in the Qinghai –Tibetan Plateau, including P. forsythii、P. theobaldi、P. erythrurus、P. putjatia and P. vlangalii. These species are adapted well to the cold clime there, and the origin of this group was the result of a vicariance event associated with the uplifting of the Qinghai -Tibetan Plateau. Although many works have been done, there are still several questions about classification、phylogenetic relationships and the biogeography of this group. The phylogeographic pattern of the P. vlangalii complex on the upper reaches of the Yellow River and the P. v. hongyuanensis in Zoige Wetland were studied in this thesis. On the upper reaches of the Yellow River, P. vlangalii complex are distributed in Zoige Wetland and the southeast and northeast region of Kuku-noor Lake. Because of the forming of the wetland in Zoige, the habitats for sand lizards are divided into many discontinuous ones, and it is necessary to analyze genetic structure in these unique habitats. The phylogeographic patter among P. putjatia、populations of P. vlangalii in the southeast region of Kuku-noor Lake and populations of P. vlangalii in Zoige Wetland hasn’t been studied yet, and the complicated geological events of the Plateau may play an important role in the populations’ diversity and species forming there. So these populations were gathered as a complex, and phylogeographic analysis were used to clarify these doubts. According to the two topics above, this thesis has two parts of results as follows: 1. Three geographic units of P. vlangalii hongyuanensis in Zoige Wetland were defined, and they were Xiaman (XM)、Hongyuan (HY) and Maqu (MQ). 785bp fragments of the mtDNA ND4-tRNAleu were determined from 72 samples and nine haplotypes were identified. As a whole, the nucleotide diversity was low,but the haplotype diversity was high. Analysis of molecular variance (AMOVA) showed that the three units were distinctly different(P<0.01),and 62.61% of the total genetic diversity was attributable to variation among units. There were 3 haplotypes shared among XM and HY,and no geographic clustering was observed except MQ from the TCS network. The results from the mismatch distribution analysis and Fu’s Fs test implied that there might be a recent population expansion in the XM unit, and this may be the reason why XM had a high haplotype diversity but a low nucleotide diversity. We estimate that the MQ and XMb have lower diversities because of some very recent geographic events, such as the formation of the Yellow river’s upriver and the Zoige Wetland. Although they are distinctly different, not enough time has passed for them to have diverged a great genetic distance. 2. 189 samples in 22 populations of P. vlangalii complex were collected, including P. putjatia、populations of P. vlangalii in the southeast and northeast region of Kuku-noor Lake、 populations of P. vlangalii in Zoige Wetland and the data from Genbank. 703bp ND4-tRNALeu sequences identified 39 haplotypes. P. forsythii was selected as outgroup, and both the Bayesian tree and the MP unrooted tree were divided into two groups(A、B). A included populations in Zoige Wetland and Xinghai(A1)、populations in the west of Kuku-noor Lake(A2)、P. theobaldi, and B included populations in the southeast of Kuku-noor Lake and Tianzhu(B1)、populations in the northeast of Kuku-noor Lake(B2). The haplotype network agreed with these groups. AMOVA showed that these five groups were distinctly different(P<0.01), and 88.63% of the total genetic diversity was attributable to variation among groups. There might be recent population expansion in A1 and A2, which corresponded to the dry climate of the last interglacial period. The expansion times were 0.189-0.105 Ma B.P. and 0.102-0.057 Ma B.P., respectively. A2 and B1 had strong genetic structure. The large genetic distance between A and B showed that they had been separated from each other for a long time(about 4.29-2.38 Ma B.P.), and it corresponded to the A phase of Qingzang Movement. The diversity between B1 and B2 at 1.73-0.96 Ma B.P. may be caused by the geological event in Huangshui valley. In early Pleistocene, populations in B1 may have gene flow because of geographic linkage, and later the uplift of the Plateau and the change of river route there made a few haplotypes lost. A1 and A2 were divided into two parts by A’nyemaqen Mountains at 0.66-0.37 Ma B.P., which maybe corresponded to glaciations at about 0.7 Ma B.P.