908 resultados para accelerator driven transmutation
Resumo:
Collimated transport of fast electron beam through solid density matter is one of the key issues behind the success of the fast ignition scheme by means of which the required amount of ignition energy can be delivered to the hot spot region of the compressed fuel. Here we report on a hot electron beam collimation scheme in solids by tactfully using the strong magnetic fields generated by an electrical resistivity gradient according to Faraday's law. This was accomplished by appropriately fabricating the targets in such a way that the electron beam is directed to flow in a metal which is embedded in a much lower resistivity and atomic number metal. Experimental results showed guided transport of hot electron beam over hundreds of microns length inside solid density plasma, which were obtained from two experiments examining the scheme for petawatt laser driven hot electron beam while employing various target configurations.
Resumo:
The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.
Resumo:
As a leading facility in laser-driven nuclear physics, ELI-NP will develop innovative research in the fields of materials behavior in extreme environments and radiobiology, with applications in the development of accelerator components, new materials for next generation fusion and fission reactors, shielding solutions for equipment and human crew in long term space missions and new biomedical technologies. The specific properties of the laser-driven radiation produced with two lasers of 1 PW at a pulse repetition rate of 1 Hz each are an ultra-short time scale, a relatively broadband spectrum and the possibility to provide simultaneously several types of radiation. Complex, cosmic-like radiation will be produced in a ground-based laboratory allowing comprehensive investigations of their effects on materials and biological systems. The expected maximum energy and intensity of the radiation beams are 19 MeV with 10^9 photon/pulse for photon radiation, 2 GeV with 108 electron/pulse for electron beams, 60 MeV with 10^12 proton/pulse for proton and ion beams and 60 MeV with 107 neutron/pulse for a neutron source. Research efforts will be directed also towards measurements for radioprotection of the prompt and activated dose, as a function of laser and target characteristics and to the development and testing of various dosimetric methods and equipment.
Resumo:
High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.
The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.
A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.
The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.
Resumo:
The work presented in this Ph.D thesis was developed in the context of complex network theory, from a statistical physics standpoint. We examine two distinct problems in this research field, taking a special interest in their respective critical properties. In both cases, the emergence of criticality is driven by a local optimization dynamics. Firstly, a recently introduced class of percolation problems that attracted a significant amount of attention from the scientific community, and was quickly followed up by an abundance of other works. Percolation transitions were believed to be continuous, until, recently, an 'explosive' percolation problem was reported to undergo a discontinuous transition, in [93]. The system's evolution is driven by a metropolis-like algorithm, apparently producing a discontinuous jump on the giant component's size at the percolation threshold. This finding was subsequently supported by number of other experimental studies [96, 97, 98, 99, 100, 101]. However, in [1] we have proved that the explosive percolation transition is actually continuous. The discontinuity which was observed in the evolution of the giant component's relative size is explained by the unusual smallness of the corresponding critical exponent, combined with the finiteness of the systems considered in experiments. Therefore, the size of the jump vanishes as the system's size goes to infinity. Additionally, we provide the complete theoretical description of the critical properties for a generalized version of the explosive percolation model [2], as well as a method [3] for a precise calculation of percolation's critical properties from numerical data (useful when exact results are not available). Secondly, we study a network flow optimization model, where the dynamics consists of consecutive mergings and splittings of currents flowing in the network. The current conservation constraint does not impose any particular criterion for the split of current among channels outgoing nodes, allowing us to introduce an asymmetrical rule, observed in several real systems. We solved analytically the dynamic equations describing this model in the high and low current regimes. The solutions found are compared with numerical results, for the two regimes, showing an excellent agreement. Surprisingly, in the low current regime, this model exhibits some features usually associated with continuous phase transitions.
Resumo:
We explored the relationships between perturbation-driven population decline and genetic/genotypic structure in the clonal seagrass Posidonia oceanica, subject to intensive meadow regression around four Mediterranean fish-farms, using seven specific microsatellites. Two meadows were randomly sampled (40 shoots) within 1,600 m2 at each site: the “impacted” station, 5–200 m from fish cages, and the “control” station, around 1,000 m downstream further away (considered a proxy of the pre-impact genetic structure at the site). Clonal richness (R), Simpson genotypic diversity (D*) and clonal sub-range (CR) were highly variable among sites. Nevertheless, the maximum distance at which clonal dispersal was detected, indicated by CR, was higher at impacted stations than at the respective control station (paired t-test: P < 0.05, N = 4). The mean number of alleles (Â) and the presence of rare alleles ( r) decreased at impacted stations (paired t-test: P < 0.05, and P < 0.02, respectively, N = 4). At a given perturbation level (quantified by the organic and nutrient loads), shoot mortality at the impacted stations significantly decreased with CR at control stations (R 2 = 0.86, P < 0.05). Seagrass mortality also increased with  (R 2 = 0.81, P < 0.10), R (R 2 = 0.96, P < 0.05) and D* (R 2 = 0.99, P < 0.01) at the control stations, probably because of the negative correlation between those parameters and CR. Therefore, the effects of clonal size structure on meadow resistance could play an important role on meadow survival. Large genotypes of P. oceanica meadows thus seem to resist better to fish farm-derived impacts than little ones. Clonal integration, foraging advantage or other size-related fitness traits could account for this effect.
Resumo:
Thesis (Ph. D.)--University of Washington, 1998
Resumo:
Tese de doutoramento, Ciências Biomédicas (Ciências Biopatológicas), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
This paper presents a new design approach for a rail-to-rail bulk-driven input stage using a standard single-well (n-well in this paper) CMOS technology. This input stage can provide nearly constant transconductance and constant slew rate over the entire input common-mode voltage, operating with a wide supply voltage ranging from sub 1-volt (V/sub T0/+ 3V/sub DSsat/) to the maximum allowed for the CMOS process, as well as preventing latch-up.
Resumo:
A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model.
Resumo:
Dissertação para obtenção do Grau de Mestre em Contabilidade e Finanças Orientador: Mestre Paulino Manuel Leite da Silva
Resumo:
The need for better adaptation of networks to transported flows has led to research on new approaches such as content aware networks and network aware applications. In parallel, recent developments of multimedia and content oriented services and applications such as IPTV, video streaming, video on demand, and Internet TV reinforced interest in multicast technologies. IP multicast has not been widely deployed due to interdomain and QoS support problems; therefore, alternative solutions have been investigated. This article proposes a management driven hybrid multicast solution that is multi-domain and media oriented, and combines overlay multicast, IP multicast, and P2P. The architecture is developed in a content aware network and network aware application environment, based on light network virtualization. The multicast trees can be seen as parallel virtual content aware networks, spanning a single or multiple IP domains, customized to the type of content to be transported while fulfilling the quality of service requirements of the service provider.
Resumo:
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Resumo:
Double Degree. A Work Project, presented as part of the requirements for the Award of a Master’s Degree in Management from NOVA – School of Business and Economics and a Masters Degree in International Business, Strategy and Innovation from Maastricht University