951 resultados para Membrane-transport
Resumo:
Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.
Resumo:
The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.
Resumo:
Cells of every living organism on our planet − bacterium, plant or animal − are organized in such a way that despite differences in structure and function they utilize the same metabolic energy represented by electrochemical proton gradient across a membrane. This gradient of protons is generated by the series of membrane bound multisubunit proteins, Complex I, II, III and IV, organized in so-called respiratory or electron transport chain. In the eukaryotic cell it locates in the inner mitochondrial membrane while in the bacterial cell it locates in the cytoplasmic membrane. The function of the respiratory chain is to accept electrons from NADH and ubiquinol and transfer them to oxygen resulting in the formation of water. The free energy released upon these redox reactions is converted by respiratory enzymes into an electrochemical proton gradient, which is used for synthesis of ATP as well as for many other energy dependent processes. This thesis is focused on studies of the first member of the respiratory chain − NADH:ubiquinone oxidoreductase or Complex I. This enzyme has a boot-shape structure with hydrophilic and hydrophobic domains, the former of which has all redox groups of the protein, the flavin and eight to nine iron-sulfur clusters. Complex I serves as a proton pump coupling transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the membrane. So far the mechanism of energy transduction by Complex I is unknown. In the present study we applied a set of different methods to study the electron and proton transfer reactions in Complex I from Escherichia coli. The main achievement was the experiment that showed that the electron transfer through the hydrophilic domain of Complex I is unlikely to be coupled to proton transfer directly or to conformational changes in the protein. In this work for the first time properties of all redox centers of Complex I were characterized in the intact purified bacterial enzyme. We also probed the role of several conserved amino acid residues in the electron transfer of Complex I. Finally, we found that highly conserved amino acid residues in several membrane subunits form a common pattern with a very prominent feature – the presence of a few lysines within the membrane. Based on the experimental data, we suggested a tentative principle which may govern the redox-coupled proton pumping in Complex I.
Resumo:
Trimeric autotransporters are a family of secreted outer membrane proteins in Gram-negative bacteria. These obligate homotrimeric proteins share a conserved C-terminal region, termed the translocation unit. This domain consists of an integral membrane β-barrel anchor and associated α-helices which pass through the pore of the barrel. The α-helices link to the extracellular portion of the protein, the passenger domain. Autotransportation refers to the way in which the passenger domain is secreted into the extracellular space. It appears that the translocation unit mediates the transport of the passenger domain across the outer membrane, and no external factors, such as ATP, ion gradients nor other proteins, are required. The passenger domain of autotransporters contains the specific activities of each protein. These are usually related to virulence. In trimeric autotransporters, the main function of the proteins is to act as adhesins. One such protein is the Yersinia adhesin YadA, found in enteropathogenic species of Yersinia. The main activity of YadA from Y. enterocolitica is to bind collagen, and it also mediates adhesion to other molecules of the extracellular matrix. In addition, YadA is involved in serum resistance, phagocytosis resistance, binding to epithelial cells and autoagglutination. YadA is an essential virulence factor of Y. enterocolitica, and removal of this protein from the bacteria leads to avirulence. In this study, I investigated the YadA-collagen interaction by studying the binding of YadA to collagen-mimicking peptides by several biochemical and biophysical methods. YadA bound as tightly to the triple-helical model peptide (Pro-Hyp-Gly)10 as to native collagen type I. However, YadA failed to bind a similar peptide that does not form a collagenous triple helix. As (Pro-Hyp-Gly)10 does not contain a specific sequence, we concluded that a triple-helical conformation is necessary for YadA binding, but no specific sequence is required. To further investigate binding determinants for YadA in collagens, I examined the binding of YadA to a library of collagen-mimicking peptides that span the entire triple-helical sequences of human collagens type II and type III. YadA bound promiscuously to many but not all peptides, indicating that a triple-helical conformation alone is not sufficient for binding. The high-binding peptides did not share a clear binding motif, but these peptides were rich in hydroxyproline residues and contained a low number of charged residues. YadA thus binds collagens without sequence specificity. This strategy of promiscuous binding may be advantageous for pathogenic bacteria. The Eib proteins from Escherichia coli are immunoglobulin (Ig)-binding homologues of YadA. I showed conclusively that recombinant EibA, EibC, EibD and EibF bind to IgG Fc. I crystallised a fragment of the passenger domain of EibD, which binds IgA in addition to IgG. The structure has a YadA-like head domain and an extended coiled-coil stalk. The top half of the coiled-coil is right-handed with hendecad periodicity, whereas the lower half is a canonical left-handed coiled-coil. At the transition from right- to left-handedness, a small β-sheet protrudes from each monomer. I was able to map the binding regions for IgG and IgA using truncations and site-directed mutagenesis to the coiled-coil stalk and identified residues critical for Ig binding.
Resumo:
The diversity of functions of eukaryotic cells is preserved by enclosing different enzymatic activities into membrane-bound organelles. Separation of exocytic proteins from those which remain in the endoplasmic reticulum (ER) casts the foundation for correct compartmentalization. The secretory pathway, starting from the ER membrane, operates by the aid of cytosolic coat proteins (COPs). In anterograde transport, polymerization of the COPII coat on the ER membrane is essential for the ER exit of proteins. Polymerization of the COPI coatomer on the cis-Golgi membrane functions for the retrieval of proteins from the Golgi for repeated use in the ER. The COPII coat is formed by essential proteins; Sec13/31p and Sec23/24p have been thought to be indispensable for the ER exit of all exocytic proteins. However, we found that functional Sec13p was not required for the ER exit of yeast endogenous glycoprotein Hsp150 in the yeast Saccharomyces cerevisiae. Hsp150 turned out to be an ATP phosphatase. ATP hydrolysis by a Walker motif located in the C-terminal domain of Hsp150 was an active mediator for the Sec13p and Sec24p independent ER exit. Our results suggest that in yeast cells a fast track transport route operates in parallel with the previously described cisternal maturation route of the Golgi. The fast track is used by Hsp150 with the aid of its C-terminal ATPase activity at the ER-exit. Hsp150 is matured with a half time of less than one minute. The cisternal maturation track is several-fold slower and used by other exocytic proteins studied so far. Operative COPI coat is needed for ER exit by a subset of proteins but not by Hsp150. We located a second active determinant to the Hsp150 polypeptide s N-terminal portion that guided also heterologous fusion proteins out of the ER in COPII coated vesicles under non-functional COPI conditions for several hours. Our data indicate that ER exit is a selective, receptor-mediated event, not a bulk flow. Furthermore, it suggests the existence of another retrieval pathway for essential reusable components, besides the COPI-operated retrotransport route. Additional experiments suggest that activation of the COPI primer, ADP ribosylation factor (ARF), is essential also for Hsp150 transport. Moreover, it seemed that a subset of proteins directly needed activated ARF in the anterograde transport to complete the ER exit. Our results indicate that coat structures and transport routes are more variable than it has been imagined.
Resumo:
At 2-3 h after phenobaribtal administration, the drug has no effect on nucleoplasmic RNA synthesis and decreases nucleolar RNA synthesis. However, at this time there is an increase in the labelling of cytoplasmic poly(A)-containing RNA, even though there is decreased labelling of total polyribosomal RNA. The decrease in labelling of nucleolar and total polyribosomal RNA owing to phenobarbital is a transient phenomenon. Under similar conditions, 3-methylcholanthrene has no effect on nucleolar RNA synthesis, but leads to an increase in synthesis of nucleoplasmic and cytoplasmic poly(A)-containing RNA. Cytosol isolated from phenobarbital-treated, but not from 3-methyl-cholanthrene-treated, animals facilitates an enhanced transport of RNA from nuclei. At the time points investigated, 3-methylcholanthrene or its metabolite shows a 10-15-fold higher concentration in the chromatin than that of phenobarbital or its metabolite. It is suggested that the primary effect of phenobarbital is at the cytoplasmic level, promoting the transport of RNA from the nuclei, which can act as a trigger for enhanced transcription at later periods. 3-Methylcholanthrene or its metabolite directly binds to the chromatin and evokes a selective transcriptional response.
Resumo:
The Golgi complex is a central organelle of the secretory pathway, responsible for a range of post-translational modifications, as well as for membrane traffic to the plasma membrane and to the endosomal-lysosomal pathway. In addition, this organelle has roles in cell migration, in the regulation of traffic, and as a mitotic check point. The structure of the Golgi complex is highly dynamic and able to respond to the amount of cargo being transported and the stage of the cell cycle. The Golgi proteome reflects the functions and structure of this organelle, and can be divided into three major groups: the Golgi resident proteins (e.g. modification enzymes), the Golgi matrix proteins (involved in structure and tethering events), and trafficking proteins (e.g. vesicle coat proteins and Rabs). The Golgi proteome has been studied on several occasions, from both rat liver and mammary gland Golgi membranes using proteomic approaches, but still little more than half of the estimated Golgi proteome is known. Nevertheless, methodological improvements and introduction of shotgun proteomics have increased the number of identified proteins, and especially the number of identified transmembrane proteins. Cartilage, even though not a typical tissue in which to study membrane traffic, secretes large amounts of extracellular matrix proteins that are extensively modified, especially by amino acid hydroxylation, glycosylation and sulfation. Furthermore, the cartilage ECM contains several, large oligomeric proteins (such as collagen II) that are difficult to assemble and transport. Indeed, cartilage has been shown to be susceptible to changes both in secretory pathway (e.g. the COPII coat assembly) and in post-translational modifications (e.g. heparan sulfate formation). Dental follicle, and the periodontal ligament (PDL) that it forms, are another type of connective tissue, and they have a role in anchoring teeth to bone. This anchorage is achieved by numerous matrix fibres that connect the bone matrix with the cementum. These tissues have in common the secretion of large matrix molecules. In this study the Golgi proteome was analysed from purified, stacked Golgi membranes isolated from rat liver. The identified, extensive proteome included a protein similar to Ab2-095, or Golgi protein 49kDa (GoPro49), which was shown to localise to the Golgi complex as an EGFP fusion protein. Surprisingly, in situ hybridisation showed the GoPro49 expression to be highly restricted to different mesenchymal tissues, especially in cartilage, and this expression pattern was clearly developmentally regulated. In addition to cartilage, GoPro49 was also expressed in the dental follicle, but was not observed in the mature PDL. Importantly, GoPro49 is the first specific marker for the dental follicle. Endogenous GoPro49 protein co-localised with β-COP in both chondrosarcoma and primary dental follicle cell lines. The COPI staining in these cells was highly dynamic, showing a number of tubules. This may reflect the type of secretory cargo they secrete. Currently GoPro49 is the only Golgi protein with such a restricted expression pattern.
Resumo:
The purpose of this thesis project is to study changes in the physical state of cell membranes during cell entry, including how these changes are connected to the presence of ceramide. The role of enzymatical manipulation of lipids in bacterial internalization is also studied. A novel technique, where a single giant vesicle is chosen under the microscope and an enzyme coupled-particle attached to the micromanipulator pipette towards the vesicle, is used. Thus, the enzymatic reaction on the membrane of the giant vesicle can be followed in real-time. The first aim of this study is to develop a system where the localized sphingomyelinase membrane interaction could be observed on the surface of the giant vesicle and the effects could be monitored with microscopy. Domain formation, which resembles acid sphingomyelinase (ASMase), causes CD95 clustering in the cell membrane due to ceramide production (Grassmé et al., 2001a; Grassmé et al., 2001b) and the formation of small vesicles inside the manipulated giant vesicle is observed. Sphingomyelinase activation has also been found to be an important factor in the bacterial and viral invasion process in nonphagocytic cells (Grassmé et al., 1997; Jan et al., 2000). Accordingly, sphingomyelinase reactions in the cell membrane might also give insight into bacterial or viral cellular entry events. We found sphingomyelinase activity in Chlamydia pneumonia elementarybodies (EBs). Interestingly, the bacterium enters host cells by endocytosis but the internalization mechanism of Chlamydia is unknown. The hypothesis is that sphingomyelin is needed for host cell entry in the infection of C. pneumonia. The second project focuses on this subject. The goal of the third project is to study a role of phosphatidylserine as a target for a membrane binding protein. Phosphatidylserine is chosen because of its importance in fusion processes. This will be another example for the importance of lipids in cell targeting, internalization, and externalization.
Resumo:
The complexity of life is based on an effective energy transduction machinery, which has evolved during the last 3.5 billion years. In aerobic life, the utilization of the high oxidizing potential of molecular oxygen powers this machinery. Oxygen is safely reduced by a membrane bound enzyme, cytochrome c oxidase (CcO), to produce an electrochemical proton gradient over the mitochondrial or bacterial membrane. This gradient is used for energy-requiring reactions such as synthesis of ATP by F0F1-ATPase and active transport. In this thesis, the molecular mechanism by which CcO couples the oxygen reduction chemistry to proton-pumping has been studied by theoretical computer simulations. By building both classical and quantum mechanical model systems based on the X-ray structure of CcO from Bos taurus, the dynamics and energetics of the system were studied in different intermediate states of the enzyme. As a result of this work, a mechanism was suggested by which CcO can prevent protons from leaking backwards in proton-pumping. The use and activation of two proton conducting channels were also enlightened together with a mechanism by which CcO sorts the chemical protons from pumped protons. The latter problem is referred to as the gating mechanism of CcO, and has remained a challenge in the bioenergetics field for more than three decades. Furthermore, a new method for deriving charge parameters for classical simulations of complex metalloenzymes was developed.
Resumo:
ORP2 is a member of mammalian oxysterol binding protein (OSBP)-related protein/gene family (ORPs), which is found in almost every eukaryotic organism. ORPs have been suggested to participate in the regulation of cellular lipid metabolism, vesicle trafficking and cellular signaling. ORP2 is a cytosolic protein that is ubiquitously expressed and most abundant in the brain. In previous studies employing stable cell lines with constitutive ORP2 overexpression ORP2 was shown to affect cellular cholesterol metabolism. The aim of this study was to characterize the properties and function of ORP2 further. ORP2 ligands were searched for among sterols and phosphoinositides using purified ORP2 and in vitro binding assays. As expected, ORP2 bound several oxysterols and cholesterol, the highest affinity ligand being 22(R)hydroxycholesterol. In addition, affinity for anionic membrane phospholipids, phosphoinositides was observed, which may assist in the membrane targeting of ORP2. Intracellular localization of ORP2 was also investigated. ORP2 was observed on the surface of cytoplasmic lipid droplets, which are storage organelles for neutral lipids. Lipid droplet targeting of ORP2 was inhibited when 22(R)hydroxycholesterol was added to the cells or when the N-terminal FFAT-motif of ORP2 was mutated, suggesting that oxysterols and the N-terminus of ORP2 regulate the localization and the function of ORP2. The role of ORP2 in cellular lipid metabolism was studied using HeLa cell lines that can be induced to overexpress ORP2. Overexpression of ORP2 was shown to enhance cholesterol efflux from the cells resulting in a decreased amount of cellular free cholesterol. ORP2 overexpressing cells responded to the loss of cholesterol by upregulating cholesterol synthesis and uptake. Intriguingly, also cholesterol esterification was increased in ORP2 overexpressing cells. These results may be explained by the ability of ORP2 to bind and thus transport cholesterol, which most likely leads to changes in cholesterol metabolism when ORP2 is overexpressed. ORP2 function was further investigated by silencing the endogenous ORP2 expression with short interfering RNAs (siRNA) in A431 cells. Silencing of ORP2 led to a delayed break-down of triglycerides under lipolytic conditions and an increased amount of cholesteryl esters in the presence of excess triglycerides. Together these results suggest that ORP2 is a sterol-regulated protein that functions on the surface of cytoplasmic lipid droplets to regulate the metabolism of triglycerides and cholesteryl esters. Although the exact mode of ORP2 action still remains unclear, this study serves as a good basis to investigate the molecular mechanisms and possible cell type specific functions of ORP2.
Resumo:
Viruses are biological entities able to replicate only within their host cells. Accordingly, entry into the host is a crucial step of the virus life-cycle. The focus of this study was the entry of bacterial membrane-containing viruses into their host cells. In order to reach the site of replication, the cytoplasm of the host, bacterial viruses have to traverse the host cell envelope, which consists of several distinct layers. Lipid membrane is a common feature among animal viruses but not so frequently observed in bacteriophages. There are three families of icosahedral bacteriophages that contain lipid membranes. These viruses belong to families Cystoviridae, Tectiviridae, and Corticoviridae. During the course of this study the entry mechanisms of phages representing the three viral families were investigated. We employed a range of microbiological, biochemical, molecular biology and microscopy techniques that allowed us to dissect phage entry into discrete steps: receptor binding, penetration through the outer membrane, crossing the peptidoglycan layer and interaction with the cytoplasmic membrane. We determined that bacteriophages belonging to the Cystoviridae, Tectiviridae, and Corticoviridae viral families use completely different strategies to penetrate into their host cells.
Resumo:
Poly(3,4-ethylenedioxy)thiophene (PEDOT) doped with tosylate ion (PEDOT-tosylate or VPP PEDOT) was synthesized by vapor phase polymerization (VPP) technique on glass as well as on glass/ITO and the electrochromic properties were investigated. Compared with that of PEDOT-PSS spin-coated on glass/ITO, the studies showed that VPP PEDOT has a lower work function and better electrochromic properties. The magneto and AC transport properties studies were done on VPP PEDOT coated on glass substrate. The system shows 2-dimensional variable range hopping and wave function shrinkage of charge carriers.
Resumo:
\alpha T3-1 cells showed a slope resistance of 1.8 G\omega. The cell membrane surface was not smooth and a scanning electron micrograph showed a complex structure with blebs and microvilli like projections. The cells showed spontaneous fluctuations at zero current resting membrane potential and hyperpolarization increased the amplitude of membrane potential fluctuations. The amplitude of membrane potential fluctuations at hyperpolarized membrane potential was attenuated on application of TTX to the bath solution. The potential at which half steady state inactivation of isolated sodium current occurred, was at a very hyperpolarized potential (-95.4 mV). The study presented in this paper shows that the voltage gated sodium channels contribute to the increase in the amplitude of electrical noise with hyperpolarization in \alpha T3-1 cells.