969 resultados para Bayesian Learning
Resumo:
Aquest estudi pretén investigar els intercanvis verbals mestre/a – aprenent(s) en dos contextos d'instrucció diferents: classes amb un enfocament AICLE (Aprenentatge Integrat de Continguts Curriculars i Llengua Estrangera) on s’aprenen continguts no lingüístics a través de l’anglès, per una banda, i classes 'tradicionals' d'anglès com a llengua estrangera, on l’anglès és alhora objecte d’estudi i vehicle de comunicació, per una altra banda. Més concretament, les preguntes que formula el/la mestre/a, la producció oral dels aprenents i el 'feedback' del/de la mestre/a en els episodis d’atenció a la forma s’han estudiat a la llum de les principals teories provinents del camp de l’Adquisició de Segones Llengües (SLA) per tal de demostrar el seu paper en l’aprenentatge de l’anglès. El corpus de dades prové de l’enregistrament de 7 sessions AICLE i d'11 sessions EFL enregistrades en format àudio i vídeo en dos centres públics d’Educació Primària (EP) de Catalunya. A cadascuna de les escoles, el/la mateix/a mestre/a és l’encarregat/da dels dos tipus d’instrucció amb el mateix grup d’aprenents (10-11 anys d’edat), fet que permet eliminar variables individuals com l'aptitud dels aprenents o l'estil del/de la mestre/a.Els resultats mostren un cert nombre de similituds discursives entre AICLE i EFL donat que ambdós enfocaments tenen lloc en el context-classe amb unes característiques ben definides. Tal com apunta la recerca realitzada en aquest camp, la instrucció AICLE reuneix un seguit de condicions idònies per un major desenvolupament dels nivells de llengua anglesa més enllà de les classes ‘tradicionals’ d’anglès. Malgrat això, aquest estudi sembla indicar que el potencial d'AICLE pel que fa a facilitar una exposició rica a l’anglès i una producció oral significativa no s’explota degudament. En aquest sentit, els resultats d’aquest estudi poden contribuir a la formació dels futurs professors d'AICLE si es busca l’assoliment d’una complementarietat d’ambdós contextos amb l’objectiu últim de millorar els nivells de domini de la llengua anglesa.
Resumo:
L'imagerie mentale est définie comme une expérience similaire à la perception mais se déroulant en l'absence d'une stimulation physique. Des recherches antérieures ont montré que l'imagerie mentale améliore la performance dans certains domaines, comme par exemple le domaine moteur. Cependant, son rôle dans l'apprentissage perceptif n'a pas encore été étudié. L'apprentissage perceptif correspond à l'amélioration permanente des performances suite à la répétition de la même tâche. Cette thèse présente une série des résultats empiriques qui montrent que l'apprentissage perceptif peut aussi être achevé en l'absence des stimuli physiques. En effet, imaginer des stimuli visuels amène à une meilleure performance avec les stimuli réels. Donc, les processus sous-jacents l'apprentissage perceptif ne sont pas uniquement déclenchés par les stimuli sensoriels, mais également par des signaux internes. En plus, l'apprentissage perceptif à travers l'imagerie mentale ne se réalise que seule-ment quand les stimuli ne sont pas (complètement) présents, mais gaiement quand les stimuli montrés ne sont pas utiles quant à la résolution de la tâche. - Mental imagery is described as an experience that resembles pereeptnal ex-perience but which occurs in the absence ef a physical stimulation. Despite its beneficial effects in, among others, motor performance, the role of mental imagery m perceptual learning has not yet been addressed. Here we focus on a specific sensory modality: vision. Perceptual learning is the ability to improve perception in a stable way through the repetition of a given task Here I demonstrate by a series of empirical results that a perceptual improve¬ment can also occur in the absence of a stimulation. Imagining visual stimuli is sufficient for successful perceptual learning. Hence, processes underlying perceptual learning are not only stimulus-driven but can also be driven by internally generated signals. Moreover, I also show that perceptual learning via mental imagery can occur not only when physical stimuli are (partially) absent, but also in conditions where stimuli are uninformative with respect to the task that has to be learned.
Resumo:
Este artículo trata, en primer lugar, de analizar el estado actual de las herramientas de e-learning relacionadas y aplicadas en el área de cirugía traumatológica, presentando las herramientas disponibles en la actualidad como vídeos, audios, simuladores de realidad virtual, pacientes virtuales, LMS, entre otras; para, a continuación, describir el diseño de una herramienta en la que los componentes cumplan con los criterios de integración, interactividad, estandarización y asegure la reutilización. Como conclusión, se valora positivamente el diseño de una herramienta totalmente de código abierto que incorpora componentes de LMCS, repositorios de objetos, pacientes virtuales, simuladores hápticos de realidad virtual y objetos educativos, entre otros. Finalmente se recomienda implementar y comprobar la utilidad de la herramienta propuesta en la formación y entrenamiento de cirujanos traumatólogos.
Resumo:
The EVS4CSCL project starts in the context of a Computer Supported Collaborative Learning environment (CSCL). Previous UOC projects created a CSCL generic platform (CLPL) to facilitate the development of CSCL applications. A discussion forum (DF) was the first application developed over the framework. This discussion forum was different from other products on the marketplace because of its focus on the learning process. The DF carried out the specification and elaboration phases from the discussion learning process but there was a lack in the consensus phase. The consensus phase in a learning environment is not something to be achieved but tested. Common tests are done by Electronic Voting System (EVS) tools, but consensus test is not an assessment test. We are not evaluating our students by their answers but by their discussion activity. Our educational EVS would be used as a discussion catalyst proposing a discussion about the results after an initial query or it would be used after a discussion period in order to manifest how the discussion changed the students mind (consensus). It should be also used by the teacher as a quick way to know where the student needs some reinforcement. That is important in a distance-learning environment where there is no direct contact between the teacher and the student and it is difficult to detect the learning lacks. In an educational environment, assessment it is a must and the EVS will provide direct assessment by peer usefulness evaluation, teacher marks on every query created and indirect assessment from statistics regarding the user activity.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.
Resumo:
This paper presents the "state of the art" about distributed systems and applications and it's focused on teaching about these systems. It presents different platforms where to run distributed applications and describes some development toolkits whose can be used to develop prototypes, practices and distributed applications. It also presents some existing distributed algorithms useful for class practices, and some tools to help managing distributed environments. Finally, the paper presents some teaching experiences with different approaches on how to teach about distributed systems.
Resumo:
A study of how the machine learning technique, known as gentleboost, could improve different digital watermarking methods such as LSB, DWT, DCT2 and Histogram shifting.
Resumo:
In the forensic examination of DNA mixtures, the question of how to set the total number of contributors (N) presents a topic of ongoing interest. Part of the discussion gravitates around issues of bias, in particular when assessments of the number of contributors are not made prior to considering the genotypic configuration of potential donors. Further complication may stem from the observation that, in some cases, there may be numbers of contributors that are incompatible with the set of alleles seen in the profile of a mixed crime stain, given the genotype of a potential contributor. In such situations, procedures that take a single and fixed number contributors as their output can lead to inferential impasses. Assessing the number of contributors within a probabilistic framework can help avoiding such complication. Using elements of decision theory, this paper analyses two strategies for inference on the number of contributors. One procedure is deterministic and focuses on the minimum number of contributors required to 'explain' an observed set of alleles. The other procedure is probabilistic using Bayes' theorem and provides a probability distribution for a set of numbers of contributors, based on the set of observed alleles as well as their respective rates of occurrence. The discussion concentrates on mixed stains of varying quality (i.e., different numbers of loci for which genotyping information is available). A so-called qualitative interpretation is pursued since quantitative information such as peak area and height data are not taken into account. The competing procedures are compared using a standard scoring rule that penalizes the degree of divergence between a given agreed value for N, that is the number of contributors, and the actual value taken by N. Using only modest assumptions and a discussion with reference to a casework example, this paper reports on analyses using simulation techniques and graphical models (i.e., Bayesian networks) to point out that setting the number of contributors to a mixed crime stain in probabilistic terms is, for the conditions assumed in this study, preferable to a decision policy that uses categoric assumptions about N.
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, with current methods for DNA analysis (Polymerase Chain Reaction with the SGM Plus™ multiplex kit), it is generally not possible to obtain a conventional autosomal DNA profile of the minor contributor if the ratio between the two contributors in a mixture is smaller than 1:10. This is a consequence of the fact that the major contributor's profile 'masks' that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP), linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed elsewhere in literature [1]. The present paper reports on the derivation of an approach for the probabilistic evaluation of DIP-STR profiling results obtained from unbalanced DNA mixtures. The procedure is based on object-oriented Bayesian networks (OOBNs) and uses the likelihood ratio as an expression of the probative value. OOBNs are retained in this paper because they allow one to provide a clear description of the genotypic configuration observed for the mixed stain as well as for the various potential contributors (e.g., victim and suspect). These models also allow one to depict the assumed relevance relationships and perform the necessary probabilistic computations.
Resumo:
Introducció: Les noves tecnologies han donat peu a la creació de propostes docents que es desenvolupen a través d’internet . Objectius: Avaluar quatre cursos de formació virtual realitzats a la Fundació Institut Català de Farmacologia per analitzat-ne l’activitat i la qualitat. Metodologia: S’ha mesurat el registre de participació dels alumnes mitjançant l’accés als materials i activitats proposades, i la qualitat de la formació mitjançant una enquesta de satisfacció. Resultats: La proporció de realització d’activitats ha estat notable i la qualitat dels cursos ben valorada. Conclusió: La bona valoració rebuda mostra la qualitat dels cursos realitzats i avala les nostres propostes pedagògiques.
Resumo:
The main objective of this ex post facto study is to compare the differencesin cognitive functions and their relation to schizotypal personality traits between agroup of unaffected parents of schizophrenic patients and a control group. A total of 52unaffected biological parents of schizophrenic patients and 52 unaffected parents ofunaffected subjects were assessed in measures of attention (Continuous PerformanceTest- Identical Pairs Version, CPT-IP), memory and verbal learning (California VerbalLearning Test, CVLT) as well as schizotypal personality traits (Oxford-Liverpool Inventoryof Feelings and Experiences, O-LIFE). The parents of the patients with schizophreniadiffer from the parents of the control group in omission errors on the ContinuousPerformance Test- Identical Pairs, on a measure of recall and on two contrast measuresof the California Verbal Learning Test. The associations between neuropsychologicalvariables and schizotpyal traits are of a low magnitude. There is no defined pattern ofthe relationship between cognitive measures and schizotypal traits
Resumo:
The log-ratio methodology makes available powerful tools for analyzing compositionaldata. Nevertheless, the use of this methodology is only possible for those data setswithout null values. Consequently, in those data sets where the zeros are present, aprevious treatment becomes necessary. Last advances in the treatment of compositionalzeros have been centered especially in the zeros of structural nature and in the roundedzeros. These tools do not contemplate the particular case of count compositional datasets with null values. In this work we deal with \count zeros" and we introduce atreatment based on a mixed Bayesian-multiplicative estimation. We use the Dirichletprobability distribution as a prior and we estimate the posterior probabilities. Then weapply a multiplicative modi¯cation for the non-zero values. We present a case studywhere this new methodology is applied.Key words: count data, multiplicative replacement, composition, log-ratio analysis