905 resultados para 7Li-NMR
Resumo:
[ES]La aplicación de la espectroscopía de resonancia magnética nuclear de protón (1H-NMR) a medios acuosos se hizo posible mediante un aparato AMX 300 MHz (Bruker) a través de un programa de pulsos incluido en el propio software que controla al espectrómetro. Dado que la secuencia de pulsos habitual (PROTON) produce una señal intensa a δ 4.67 debida a la propia agua, se utilizó un programa de pulsos (protonh2o) que la elimina por completo por irradiación a una potencia hl2 de 60 dB. Esto permitió ver y medir las señales correspondientes tanto a los hidratos de carbono como a los alcanoles.
Resumo:
[EN]Here we present experimental data of different properties for a set of binary mixtures composed of water or alkanols (methanol to butanol) with an ionic liquid (IL), butylpyridinium tetrafluoroborate [bpy][BF4]. Solubility data (xIL,T) are presented for each of the mixtures, including water, which is found to have a small interval of compositions in IL, xIL, with immiscibility. In each case, the upper critical solubility temperature (UCST) is determined and a correlation was observed between the UCST and the nature of the compounds in the mixtures. Miscibility curves establish the composition and temperature intervals where thermodynamic properties of the mixtures, such as enthalpies Hm E and volumes Vm E, can be determined.
Resumo:
[EN]This work studies the binaries of 1-butyl-X-methylpyridinium tetrafluoroborate [bXmpy][BF4] (X = 2, 3, and 4) with four 1,ω-dichloroalkanes, ω = 1−4, using the results obtained for the mixing properties hE and v E at two temperatures. The three isomers of the ionic liquid (IL) are weakly miscible with the 1,ω-dichloroalkanes when ω ≥ 5 and moderately soluble for ω = 4. The vE s of all the binaries present contractive effects, v E < 0, which are more pronounced with increasing temperature; the variation in vE with ω is positive, although this changes after ω = 4 due to problems of immiscibility
Resumo:
The study of protein fold is a central problem in life science, leading in the last years to several attempts for improving our knowledge of the protein structures. In this thesis this challenging problem is tackled by means of molecular dynamics, chirality and NMR studies. In the last decades, many algorithms were designed for the protein secondary structure assignment, which reveals the local protein shape adopted by segments of amino acids. In this regard, the use of local chirality for the protein secondary structure assignment was demonstreted, trying to correlate as well the propensity of a given amino acid for a particular secondary structure. The protein fold can be studied also by Nuclear Magnetic Resonance (NMR) investigations, finding the average structure adopted from a protein. In this context, the effect of Residual Dipolar Couplings (RDCs) in the structure refinement was shown, revealing a strong improvement of structure resolution. A wide extent of this thesis is devoted to the study of avian prion protein. Prion protein is the main responsible of a vast class of neurodegenerative diseases, known as Bovine Spongiform Encephalopathy (BSE), present in mammals, but not in avian species and it is caused from the conversion of cellular prion protein to the pathogenic misfolded isoform, accumulating in the brain in form of amiloyd plaques. In particular, the N-terminal region, namely the initial part of the protein, is quite different between mammal and avian species but both of them contain multimeric sequences called Repeats, octameric in mammals and hexameric in avians. However, such repeat regions show differences in the contained amino acids, in particular only avian hexarepeats contain tyrosine residues. The chirality analysis of avian prion protein configurations obtained from molecular dynamics reveals a high stiffness of the avian protein, which tends to preserve its regular secondary structure. This is due to the presence of prolines, histidines and especially tyrosines, which form a hydrogen bond network in the hexarepeat region, only possible in the avian protein, and thus probably hampering the aggregation.
Resumo:
Nuclear Magnetic Resonance (NMR) is a branch of spectroscopy that is based on the fact that many atomic nuclei may be oriented by a strong magnetic field and will absorb radiofrequency radiation at characteristic frequencies. The parameters that can be measured on the resulting spectral lines (line positions, intensities, line widths, multiplicities and transients in time-dependent experi-ments) can be interpreted in terms of molecular structure, conformation, molecular motion and other rate processes. In this way, high resolution (HR) NMR allows performing qualitative and quantitative analysis of samples in solution, in order to determine the structure of molecules in solution and not only. In the past, high-field NMR spectroscopy has mainly concerned with the elucidation of chemical structure in solution, but today is emerging as a powerful exploratory tool for probing biochemical and physical processes. It represents a versatile tool for the analysis of foods. In literature many NMR studies have been reported on different type of food such as wine, olive oil, coffee, fruit juices, milk, meat, egg, starch granules, flour, etc using different NMR techniques. Traditionally, univariate analytical methods have been used to ex-plore spectroscopic data. This method is useful to measure or to se-lect a single descriptive variable from the whole spectrum and , at the end, only this variable is analyzed. This univariate methods ap-proach, applied to HR-NMR data, lead to different problems due especially to the complexity of an NMR spectrum. In fact, the lat-ter is composed of different signals belonging to different mole-cules, but it is also true that the same molecules can be represented by different signals, generally strongly correlated. The univariate methods, in this case, takes in account only one or a few variables, causing a loss of information. Thus, when dealing with complex samples like foodstuff, univariate analysis of spectra data results not enough powerful. Spectra need to be considered in their wholeness and, for analysing them, it must be taken in consideration the whole data matrix: chemometric methods are designed to treat such multivariate data. Multivariate data analysis is used for a number of distinct, differ-ent purposes and the aims can be divided into three main groups: • data description (explorative data structure modelling of any ge-neric n-dimensional data matrix, PCA for example); • regression and prediction (PLS); • classification and prediction of class belongings for new samples (LDA and PLS-DA and ECVA). The aim of this PhD thesis was to verify the possibility of identify-ing and classifying plants or foodstuffs, in different classes, based on the concerted variation in metabolite levels, detected by NMR spectra and using the multivariate data analysis as a tool to inter-pret NMR information. It is important to underline that the results obtained are useful to point out the metabolic consequences of a specific modification on foodstuffs, avoiding the use of a targeted analysis for the different metabolites. The data analysis is performed by applying chemomet-ric multivariate techniques to the NMR dataset of spectra acquired. The research work presented in this thesis is the result of a three years PhD study. This thesis reports the main results obtained from these two main activities: A1) Evaluation of a data pre-processing system in order to mini-mize unwanted sources of variations, due to different instrumental set up, manual spectra processing and to sample preparations arte-facts; A2) Application of multivariate chemiometric models in data analy-sis.
Resumo:
This thesis is focused on the development of heteronuclear correlation methods in solid-state NMR spectroscopy, where the spatial dependence of the dipolar coupling is exploited to obtain structural and dynamical information in solids. Quantitative results on dipolar coupling constants are extracted by means of spinning sideband analysis in the indirect dimension of the two-dimensional experiments. The principles of sideband analysis were established and are currently widely used in the group of Prof. Spiess for the special case of homonuclear 1H double-quantum spectroscopy. The generalization of these principles to the heteronuclear case is presented, with special emphasis on naturally abundant 13C-1H systems. For proton spectroscopy in the solid state, line-narrowing is of particular importance, and is here achieved by very-fast sample rotation at the magic angle (MAS), with frequencies up to 35 kHz. Therefore, the heteronuclear dipolar couplings are suppressed and have to be recoupled in order to achieve an efficient excitation of the observed multiple-quantum modes. Heteronuclear recoupling is most straightforwardly accomplished by performing the known REDOR experiment, where pi-pulses are applied every half rotor period. This experiment was modified by the insertion of an additional spectroscopic dimension, such that heteronuclear multiple-quantum experiments can be carried out, which, as shown experimentally and theoretically, closely resemble homonuclear double-quantum experiments. Variants are presented which are well-suited for the recording of high-resolution 13C-1H shift correlation and spinning-sideband spectra, by means of which spatial proximities and quantitative dipolar coupling constants, respectively, of heteronuclear spin pairs can be determined. Spectral editing of 13C spectra is shown to be feasible with these techniques. Moreover, order phenomena and dynamics in columnar mesophases with 13C in natural abundance were investigated. Two further modifications of the REDOR concept allow the correlation of 13C with quadrupolar nuclei, such as 2H. The spectroscopic handling of these nuclei is challenging in that they cover large frequency ranges, and with the new experiments it is shown how the excitation problem can be tackled or circumvented altogether, respectively. As an example, one of the techniques is used for the identification of a yet unknown motional process of the H-bonded protons in the crystalline parts of poly(vinyl alcohol).
Resumo:
In einer Vielzahl von Ionenkristallen mit Wasserstoffbrücken kann der Übergang aus einer paraelektrischen in eine elektrisch geordnete Phase mittels Substitution der Deuteronen durch Protonen um typischerweise 100 K abgesenkt werden. Die Ursache dieses Isotopieeffekts wird in Tunnelmoden der Protonen, in der Kopplung der Protonen untereinander oder in der Geometrie bzw. Symmetrie der Wasserstoffbrücke gesucht. Als Modellsubstanzen zur Untersuchung bieten sich die Trialkalihydrogendisulfate an. Hier sind die Wasserstoffbrücken, welche die Sulfattetraeder lokal zu Dimeren vernetzen, weit voneinander getrennt. Daher wird kein langreichweitiges Wasserstoffbrückennetzwerk ausgebildet.Bei den in dieser Arbeit untersuchten Rb3H1-xDx(SO4)2-Kristallen tritt der Phasenübergang im deuterierten Kristall bei 82 K auf und ist in protonierten Proben vollständig unterdrückt. Es wurde die 87Rb-NMR eingesetzt, weil damit Untersuchungen von Struktur und Dynamik im gesamten Konzentrationsbereich möglich sind. Die Meßgröße ist der elektrische Feldgradient (EFG), welcher durch die umgebenden Ionenladungen erzeugt wird.Durch orientierungsabhängige Messungen wurde gezeigt, daß die drei in der paraelektrischen Phase von Rb3D(SO4)2 vorkommenden EFG sich nicht durch Symmetrieoperationen ineinander überführen lassen. Es liegen somit kleine Abweichungen von einer monoklinen Symmetrie vor. Am Übergang in die antiferroelektrische Phase vervierfacht sich die Anzahl der kristallografisch inäquivalenten Einbaulagen. Aus dem Vergleich von NMR und Röntgenbeugung kann geschlossen werden, daß die Abweichungen von der monoklinen Raumgruppe und die elektrische Ordnung primär durch die Wasserstoffkerne verursacht werden. Aus der Aufspaltung der Resonanzlinien wurde ein statischer kritischer Exponent von ï¢ = 0,21 ï± 0,03 ermittelt, der mit trikritischem Verhalten verträglich ist. Die longitudinale Relaxation der Kernspinmagnetisierung wird durch Fluktuationen des EFG verursacht. Am Phasenübergang sind diese Fluktuationen an der Einbaulage der Rubidiumatome vergleichsweise groß und stark anisotrop. Beides läßt sich gut beschreiben, wenn angenommen wird, daß nur die Dynamik der Wasserstoffkerne die Kernspins relaxieren läßt. Für die longitudinale Relaxation wurde ebenfalls ein kritisches Verhalten am Phasenübergang gefunden. Der Exponent beträgt in deuterierten Proben ï¬ = -0,67 +- 0,07 und ist für die teildeuterierte Proben mit x = 0,5 größer: ï¬ = -1,15 +- 0,15. In der vorliegenden Arbeit konnte gezeigt werden, daß zur Beschreibung der NMR an verschiedenen Kernsorten weder, wie zuvor in der Literatur diskutiert, asymmetrische Wasserstoffbrücken noch Tunnelmoden erforderlich sind. Die hier erstmalig in den Trialkalihydrogendisulfaten gefundenen konzentrationsabhängigen kritischen Exponenten bilden einen neuen Prüfstein für die Modelle des Isotopieeffekts, die sich bisher primär auf die Erklärung der Phasenübergangstemperatur beschränkt haben.
Resumo:
Die innerhalb dieser Arbeit mittels moderner Festkörper-NMR-Methoden untersuchte molekulare Dynamik in Poly(methacrylat)-Schmelzen und Polyphenylen-Dendrimeren ist durch eine bemerkenswerte Anisotropie gekennzeichnet.Die Anisotropie der molekularen Dynamik zeigt sich in geschmolzenen, ataktischen und isotaktischen Poly(ethylmethacrylaten) (PEMA) durch die Zeitskalenseparation der segmentellen alpha-Relaxation von einem etwa zwei Größenordnungen langsameren Relaxationsprozeß, welcher die Isotropisierung der Polymerhauptkette wiedergibt. Die Isotropisierungsdynamik der Polymerhauptkette wird - mit Ausnahme von PMMA - durch eine universelle, nicht-korrelationszeitenverteilte Relaxationsmode der Poly(methacrylate) quantifiziert, deren Temperaturabhängigkeit durch einen einheitlichen WLF-Parametersatz beschrieben werden kann. Geometrisch läßt sich die Isotropisierung der Hauptkette durch Sprungprozesse beliebiger Amplitude von Kettenstücken mit gestreckter all-trans-Konformation interpretieren. Die Kette zeigt eine außergewöhnliche konformative Stabilität. WAXS-Messungen deuten für PEMA und seine höheren Homologen die Existenz einer Schichtstruktur an, in der sich die steifen, polaren Hauptketten lokal in Monolagen anordnen, welche durch Bereiche zusammengelagerter Seitengruppen getrennt sind. Die Festkörper-NMR-Untersuchungen an Polyphenylen-Dendrimeren bringen zwei zentrale Aspekte in der wechselseitigen Beziehung von Struktur und Dynamik hervor. Zum einen ist die beobachtete molekulare Dynamik auf lokale Reorientierungen einzelner, terminaler Phenylringe um definierte Achsen beschränkt. Polyphenylen-Dendrimermoleküle sind unter diesen Bewegungen formstabil. Zum anderen können sowohl schnelle, als auch langsame Phenylreorientierungen nachgewiesen werden, wobei jeweils die intramolekulare Packungsdichte der Phenylringe das dynamische Verhalten der Polyphenylen-Dendrimere kontrolliert.
Resumo:
Das Ziel der vorliegenden Arbeit ist die Untersuchung der räumlichen und zeitlichen Aspekte der heterogenen Dynamik in Modellglasbildnern. Dabei wird vor allem die langsame alpha-Relaxationsdynamik oberhalb des Glasüberganges Tg untersucht. Die nukleare Magnetresonanz zeigt ihre einmalige Vielseitigkeit bei der Untersuchung molekularer Dynamik, wenn die angewandten Techniken und Experimente durch Simulationen unterstützt werden. Die räumliche Aspekt dynamischer Heterogenitäten wird untersucht durch ein reduziertes vierdimensionales Spindiffusionsexperiment (4D3CP), ein Experiment, das Reorientierungsraten örtlich korreliert. Eine Simulation dieses Experimentes an einem System harter Kugeln liefert wertvolle Informationen über die Auswertemethode des 4D3CP Experiments. Glycerol und o-terphenyl werden durch das 4D3CP Experiment untersucht. Die erhaltenen Resultate werden mit bereits publizierten Daten des polymeren Glasbildners PVAc verglichen. Während PVAc und o-terphenyl eine Längenskale von 3.7 nm bzw. 2.9 nm aufweisen, ist die Längenskale von Glycerol signifikant kleiner bei 1.1 nm. Ein neues Experiment, welches sensitiv auf Translationsbewegung reagiert, wird vorgestellt. Durch Verwendung eines pi-Impulszuges kann eine separate Evolution unter dem Hamiltonian der dipolaren Kopplung und der chemischen Verschiebungsanisotropie erreicht werden.
Resumo:
Es wurde eine homologe Reihe von Polyalkoholen mit der allgemeinen Summenformel CNHN+2(OH)N (N=3-6) hinsichtlich ihrer Glaseigenschaften ober- und unterhalb der Glasübergangstemperatur TG untersucht. Dabei kamen die dielektrische und magnetische Resonanzspektroskopie (NMR) zum Einsatz. Es ergab sich oberhalb TG eine systematische Zunahme aller untersuchten dynamischen Parameter wie Fragilität, Breite der angenommenen Korrelationszeitenverteilungen und der Sprungwinkel der primären Glasrelaxation mit zunehmendem N. Dies kann insgesamt als eine Abnahme des Netzwerkcharakters, der durch Wasserstoffbrückenbindungen bedingt ist, bei zunehmender Kettenlänge interpretiert werden. Unterhalb TG entwickelt sich mit zunehmendem N die Sekundärrelaxation von einem 'Wing Szenario' zu einem ausgeprägten Johari - Goldstein (JG) - Prozess. Ein Sprungmodell, welches eine eingeschränkte Reorientierung auf einem Konusrand beschreibt, erzeugt mit Hilfe der parametrisierten dielektrischen Verlustspektren Sprungwinkel, die mit denen aus aktuellen ²H - NMR spektroskopischen Untersuchungen vergleichbar sind. Durch den Vergleich unterschiedlich deuterierter Derivate von Glyzerin (N=3) und Sorbitol (N=6) wurde gefolgert, dass auch unterhalb TG der Netzwerkcharakter mit zunehmender Kettenlänge abnimmt.Aufgrund der hier durchgeführten Untersuchungen konnte eine Zeitskala für einen Johari - Goldstein - Prozess im Modellglasbildner Glyzerin extrapoliert werden. Eine Deutung des Wings als Hochfrequenzausläufer des JG - Prozesses ist dadurch möglich.Der JG - Prozess kann somit als universeller Glasprozess interpretiert werden, der in verschiedenen Glasbildnern in unterschiedlicher Ausprägung auftritt.
Resumo:
In der vorliegenden Arbeit wurde die Druckabhängigkeit der molekularen Dynamik mittels 2H-NMR und Viskositätsmessungen untersucht. Für die Messungen wurde der niedermolekulare organische Glasbildner ortho-Terphenyl (OTP) ausgewählt, da dieser aufgrund einer Vielzahl vorliegender Arbeiten als Modellsubstanz angesehen werden kann. Daneben wurden auch Messungen an Salol durchgeführt.Die Untersuchungen erstreckten sich über einen weiten Druck- und Temperaturbereich ausgehend von der Schmelze bis weit in die unterkühlte Flüssigkeit. Dieser Bereich wurde aufgrund experimenteller Voraussetzungen immer durch eine Druckerhöhung erreicht.Beide Substanzen zeigten druckabhängig ein Verhalten, das dem der Temperaturvariation bei Normaldruck sehr ähnelt. Auf einer Zeitskala der molekularen Dynamik von 10E-9 s bis zu 10E+2 s wurde daher am Beispiel von OTP ein Druck-Temperatur-Zeit-Superpositionsprinzip diskutiert. Zudem konnte eine Temperatur-Dichte-Skalierung mit rho T-1/4 erfolgreich durchgeführt werden. Dies entspricht einem rein repulsiven Potentialverlauf mit rho -12±3 .Zur Entscheidung, ob die Verteilungsbreiten der mittleren Rotationskorrelationszeiten durch Druckvariation beeinflußt werden, wurden auch Ergebnisse anderer experimenteller Methoden herangezogen. Unter Hinzuziehung aller Meßergebnisse kann sowohl eine Temperatur- als auch Druckabhängigkeit der Verteilungsbreite bestätigt werden. Zur Auswertung von Viskositätsdaten wurde ein Verfahren vorgestellt, das eine quantitative Aussage über den Fragilitätsindex von unterkühlten Flüssigkeiten auch dann zuläßt, wenn die Messungen nicht bis zur Glasübergangstemperatur Tg durchgeführt werden. Die Auswertung der druckabhängigen Viskositätsdaten von OTP und Salol zeigt einen sehr differenzierten druckabhängigen Verlauf des Fragilitätsindexes für beide Glasbildner. OTP zeigt zunächst eine leichte Abnahme und danach wieder eine Zunahme des Fragilitätsindexes, dieses Ergebnis wird auch von Simulationsdaten, die der Literatur entnommen wurden, unterstützt. Salol hingegen zeigt zunächst eine deutliche Zunahme und danach eine Abnahme des Fragilitätsindexes. Das unterschiedliche Verhalten der beiden Glasbildner mit ähnlichem Fragilitätsindex bei Normaldruck wird auf die Wasserstoffbrückenbindungen innerhalb von Salol zurückgeführt.
Resumo:
Die Aufklärung von Biosynthesewegen erfolgt häufig mit Hilfe von Fütterungsexperimenten mit radioaktiven oder stabilen Isotopen markierten Präkusoren oder auf der Basis der Enzymreinigung mit anschließender molekularbiologischer Charakterisierung. Die erstgenannte Methode verlangt die Isolierung der Produkte. Jedoch besteht bei Aufarbeitung und Extraktion immer die Gefahr, daß sich der Metabolit teilweise oder vollständig chemisch verändert. Ein weiterer Nachteil der genannten Methoden ist, daß diese generell mühsam und zeitaufwendig sind. Mit Hilfe der in vivo NMR-Spektroskopie können diese Nachteile umgangen werden. In der vorliegenden Arbeit wurden Biotransformationen und Biosynthesesequenzen des Ajmalin-Biosyntheseweges mit Hilfe der in vivo NMR-Spektroskopie in Pflanzenzellkulturen von Rauvolfia serpentina und Rauvolfia serpentina x Rhazya stricta anhand der natürlichen 13C-Häufigkeit untersucht. Dafür wurden ein 700 MHz, 800 MHz und ein 500 MHz CryoProbe Spektrometer eingesetzt, um die Biotransformationen von Isatin-3-oxim und Isatin sowie die Metabolisierungen der Alkaloide Vellosimin, Vinorin, Vomilenin, Ajmalin, Nß-Methyl-dihydrochano-ajmalin und Perakin mit der 1H-13C invers korrelierten NMR-Spektroskopie zu verfolgen.
Structure and dynamics of supramolecular assemblies studied by advanced solid-state NMR spectroscopy
Resumo:
Ziel der vorliegenden Arbeit ist die Aufklärung von Struktur und Dynamik komplexer supramolekularer Systeme mittels Festkörper NMR Spektroskopie. Die Untersuchung von pi-pi Wechselwirkungen, welche einen entscheidenden Einfluss auf die strukturellen und dynamischen Eigenschaften supra- molekularer Systeme haben, hilft dabei, die Selbst- organisationsprozesse dieser komplexen Materialien besser zu verstehen. Mit dipolaren 1H-1H and 1H-13C Wiedereinkopplungs NMR Methoden unter schnellem MAS können sowohl 1H chemische Verschiebungen als auch dipolare 1H-1H und 1H-13C Kopplungen untersucht werden, ohne dass eine Isotopenmarkierung erforderlich ist. So erhält man detaillierte Informationen über die Struktur und die Beweglichkeit einzelner Molekül- segmente. In Verbindung mit sogenannten nucleus independent chemical shift (NICS) maps (berechnet mit ab-initio Methoden) lassen sich Abstände von Protonen relativ zu pi-Elektronensystemen bestimmen und so Strukturvorschläge ableiten. Mit Hilfe von homo- und heteronuklearen dipolaren Rotationsseitenbandenmustern könnenaußerdem Ordnungs- parameter für verschiedene Molekülsegmente bestimmt werden. Die auf diese Weise gewonnenen Informationen über die strukturellen und dynamischen Eigenschaften supramolekularer Systeme tragen dazu bei, strukturbestimmende Molekül- einheiten und Hauptordnungsphänomene zu identifizieren sowie lokale Wechselwirkungen zu quantifizieren, um so den Vorgang der Selbstorganisation besser zu verstehen.