986 resultados para 2D NMR
Resumo:
A comprehensive study on physical and chemical properties of Mo/MCM-22 bifunctional catalysts has been made by using combined analytic and spectroscopic techniques, such as adsorption, elemental analysis, and Xe-129 and P-31 NMR of adsorbed trialkylphosphine oxide probe molecules. Samples prepared by the impregnation method with Mo loadings ranging from 2-10 wt.% have been examined and the results are compared with that obtained from samples prepared by mechanical mixing using MoO3 or Mo2C as agents. Sample calcination treatment is essential in achieving a well-dispersed metal species in Mo/MCM-22. It was found that, upon initial incorporation, the Mo species tend to inactivate both Bronsted and Lewis sites locate predominantly in the supercages rather than the 10-membered ring channels of MCM-22. However, as the Mo loading exceeds 6 wt.%, the excessive Mo species tend to migrate toward extracrystalline surfaces of the catalyst. A consistent decrease in concentrations of acid sites with increasing Mo loading < 6 wt.% was found, especially for those with higher acid strengths. Upon loading of Mo > 6 wt.%, further decreases in both Bronsted and Lewis acidities were observed. These results provide crucial supports for interpreting the peculiar behaviors previously observed during the conversion of methane to benzene over Mo/MCM-22 catalyst under non-oxidative conditions, in which an optimal performance was achieved with a Mo loading of 6 wt.%. The effects of Mo incorporation on porosity and acidity features of the catalyst are discussed. (C) 2004 Published by Elsevier B.V.
Resumo:
By using the solid-state MAS NMR technique, the hydrothermal stabilities (under 100% steam at 1073 K) of HZSM-5 zeolites modified by lanthanum and phosphorus have been studied. They are excellent zeolite catalysts for residual oil selective catalytic cracking (RSCC) processes. It was indicated that the introduction of phosphorus to the zeolite via impregnation with orthophosphoric acid led to dealumination as well as formation of different Al species, which were well distinguished by Al-27 3Q MAS NMR. Meanwhile, the hydrothermal stabilities of the zeolites (P/HZSM-5, La-P/HZSM-5) were enhanced even after the samples were treated under severe conditions for a prolonged time. It was found that the Si-O-Al bonds were broken under hydrothermal conditions, while at the same time the phosphorous compounds would occupy the silicon sites to form (SiO)(x)Al(OP)(4 - x) species. With increasing time, more silicon sites around the tetrahedral coordinated Al in the lattice can be replaced till the aluminum is completely expelled from the framework. The existence of lanthanum can partially restrict the breaking of the Si-O-Al bonds and the replacement of the silicon sites by phosphorus, thus preventing dealumination under hydrothermal conditions. This was also proved by P-31 MAS NMR spectra. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The domain-structure of samples containing a series of starch/poly(sodium acrylate)-grafted superabsorbents, pure starch, pure poly(sodium acrylate), and blend of starch/poly(sodium acrylate) has been studied by high-resolution solid-state C-13 NMR spectroscopy at room temperature. The result shows that the crystallinity of starch decreases greatly in the grafted and blended samples.
Resumo:
Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats.
Resumo:
基于核磁共振技术的代谢组学是近年发展起来的一种新的组学技术,主要利用生物体液的核磁共振谱提供生物体内全部小分子代谢物的丰富信息。然而,噪声的存在影响了模式识别方法分析的准确度。近年来小波变换以其多分辨率分析的特性、方法简单、快速等优点成为一种有效的去除分析信号噪声的方法。本实验通过运用小波变换去除噪声、校正基线后,再进行Fisher判别分析,得到了较传统分析更为清晰的代谢标识物,建立了良好的代谢模型
Resumo:
代谢组学是基于核磁共振(NMR)和模式识别的研究,信号的全面提取和分析是非常重要的。将小波分析用于1HNMR信号的去噪平滑,先去除掉噪声信号的干扰,再通过主成分分析建立数学模型。结果表明,这是一种能够有效去除噪声信号的方法,可用于更为精确的定量分析,建立了较以往更为完善的代谢组学药物模型