901 resultados para self-assembled semiconductor quantum dot
Resumo:
Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
This thesis presents ab initio studies of two kinds of physical systems, quantum dots and bosons, using two program packages of which the bosonic one has mainly been developed by the author. The implemented models, \emph{i.e.}, configuration interaction (CI) and coupled cluster (CC) take the correlated motion of the particles into account, and provide a hierarchy of computational schemes, on top of which the exact solution, within the limit of the single-particle basis set, is obtained. The theory underlying the models is presented in some detail, in order to provide insight into the approximations made and the circumstances under which they hold. Some of the computational methods are also highlighted. In the final sections the results are summarized. The CI and CC calculations on multiexciton complexes in self-assembled semiconductor quantum dots are presented and compared, along with radiative and non-radiative transition rates. Full CI calculations on quantum rings and double quantum rings are also presented. In the latter case, experimental and theoretical results from the literature are re-examined and an alternative explanation for the reported photoluminescence spectra is found. The boson program is first applied on a fictitious model system consisting of bosonic electrons in a central Coulomb field for which CI at the singles and doubles level is found to account for almost all of the correlation energy. Finally, the boson program is employed to study Bose-Einstein condensates confined in different anisotropic trap potentials. The effects of the anisotropy on the relative correlation energy is examined, as well as the effect of varying the interaction potential.}
Resumo:
We report on a new simple route to realize a high resolution nanograting. By adopting an InAlGaAs matrix and strain-compensated technique, we have proved that a uniform self-assembled InAs nanowire array can be fabricated by molecular beam epitaxy (MBE). A nanograting woven by self-assembled semiconductor nanowires shows a conspicuous diffraction feature. The good agreement between the theoretical and experimental values of diffraction peak positions indicates that a uniform nanowire array is a promising nanograting. This simple one-step MBE growth method will open exciting opportunities for the field of clever optics design.
Resumo:
Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.
Resumo:
The magnetoexciton polaron (MP) is investigated theoretically in a diluted magnetic semiconductor quantum dot (QD), with the Coulomb interaction and the sp-d exchange interaction included. The MP energy decreases rapidly with increasing magnetic field at low magnetic field and saturates at high magnetic field for small QDs, and the dependences of the MP energy on magnetic field are quite different for different QD radii due to the different carrier-induced magnetic fields B-MP. The competition between the sp-d exchange interaction and the band gap shrinkage results in there being a maximum exhibited by the MP energy With increasing temperature. Our numerical results are in good agreement with experiment (Maksimov A A, Bacher G, MacDonald A, Kulakovskii V D, Forchel A, Becker C R, Landwehr G and Molenkamp L W 2000 Phys. Rev. B 62 R7767).
Resumo:
High power and long lifetime have been demonstrated for a semiconductor quantum-dot (QD) laser with five-stacked InAs/GaAs QDs separated by an InGaAs strain-reducing layer (SRL) and a GaAs spacer layer as an active medium. The QD lasers exhibit a peak power of 3.6 W at 1080 nm, a quantum slope efficiency of 84.6%, and an output-power degradation rate of 5.6%/1000 h with continuous-wave constant-current operation at room temperature. A comparative reliability investigation indicates that the lifetime of the InAs/GaAs QD laser with the InGaAs SRL is much longer than that of a QD laser without the InGaAs SRL. This improved lifetime of the QD laser could be explained by the reduction of strain in and around InAs QDs induced by the InGaAs SRL. (C) 2001 American Institute of Physics.
Resumo:
We propose and demonstrate the sequential initialization, optical control, and readout of a single spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation between the hole and charged-exciton states, which is conditional on the initial hole spin state. The spin-selective creation of the charged exciton provides a photocurrent readout of the hole spin state.
Resumo:
A (II,Mn)VI diluted magnetic semiconductor quantum dot with an integer number of electrons controlled with a gate voltage is considered. We show that a single electron is able to induce a collective spontaneous magnetization of the Mn spins, overcoming the short range antiferromagnetic interactions, at a temperature order of 1 K, 2 orders of magnitude above the ordering temperature in bulk. The magnetic behavior of the dot depends dramatically on the parity of the number of electrons in the dot.
Resumo:
We report on the theoretical study of the interaction of the quantum dot (QD) exciton with the photon waveguide models in a semiconductor microcavity. The InAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices.
Resumo:
Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.
Resumo:
Self-assembly of size-uniform and spatially ordered quantum dot (QD) arrays is one of the major challenges in the development of the new generation of semiconducting nanoelectronic and photonic devices. Assembly of Ge QD (in the ∼5-20 nm size range) arrays from randomly generated position and size-nonuniform nanodot patterns on plasma-exposed Si (100) surfaces is studied using hybrid multiscale numerical simulations. It is shown, by properly manipulating the incoming ion/neutral flux from the plasma and the surface temperature, the uniformity of the nanodot size within the array can be improved by 34%-53%, with the best improvement achieved at low surface temperatures and high external incoming fluxes, which are intrinsic to plasma-aided processes. Using a plasma-based process also leads to an improvement (∼22% at 700 K surface temperature and 0.1 MLs incoming flux from the plasma) of the spatial order of a randomly sampled nanodot ensemble, which self-organizes to position the dots equidistantly to their neighbors within the array. Remarkable improvements in QD ordering and size uniformity can be achieved at high growth rates (a few nms) and a surface temperature as low as 600 K, which broadens the range of suitable substrates to temperature-sensitive ultrathin nanofilms and polymers. The results of this study are generic, can also be applied to nonplasma-based techniques, and as such contributes to the development of deterministic strategies of nanoassembly of self-ordered arrays of size-uniform QDs, in the size range where nanodot ordering cannot be achieved by presently available pattern delineation techniques.
Resumo:
We calculate the electronic structures and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAs/AlxGa1-xAs quantum dot (QD) in the framework of effective-mass envelope-function theory. The variation of the electronic structures and binding energy with the QD structure parameters and the position of the impurity are studied in detail. We find that (1) acceptor impurity energy levels depend more sensitively on the size of the QD than those of a donor impurity; (2) all impurity energy levels strongly depend on the GaAs quantum well (QW) width; (3) a donor impurity in the QD has only one binding energy level except when the GaAs QW is large; (4) an acceptor impurity in the QD has two binding energy levels, which correspond to heavy- and light-hole quantum states; (5) the binding energy has a maximum value when the impurity is located below the symmetry axis along the growth direction; and (6) the binding energy has a minimum value when the impurity is located at the top corner of the QD. (c) 2006 American Institute of Physics.
Resumo:
We have fabricated a quantum dot (QD) structure for long-wavelength temperature-insensitive semiconductor laser by introducing a combined InAlAs and InGaAs overgrowth layer on InAs/GaAs QDs. We found that QDs formed on GaAs (100) substrate by InAs deposition followed by the InAlAs and InGaAs combination layer demonstrate two effects: one is the photoluminescence peak redshift towards 1.35 mum at room temperature, the other is that the energy separation between the ground and first excited states can be up to 103 meV. These results are attributed to the fact that InAs/GaAs intermixing caused by In segregation at substrate temperature of 520 degreesC can be considerably suppressed by the thin InAlAs layer and the strain in the quantum dots can be reduced by the combined InAlAs and InGaAs layer. (C) 2002 American Institute of Physics.